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ABSTRACT

Visual working memory is a system used to hold information actively in mind for a limited time. The
number of items and the precision with which we can store information has limits that define its capac-
ity. How much control do we have over the precision with which we store information when faced with
these severe capacity limitations? Here, we tested the hypothesis that rank-ordered attentional priority
determines the precision of multiple working memory representations. We conducted two psychophys-
ical experiments that manipulated the priority of multiple items in a two-alternative forced choice task
(2AFC) with distance discrimination. In Experiment 1, we varied the probabilities with which memorized
items were likely to be tested. To generalize the effects of priority beyond simple cueing, in Experiment 2,
we manipulated priority by varying monetary incentives contingent upon successful memory for items
tested. Moreover, we illustrate our hypothesis using a simple model that distributed attentional
resources across items with rank-ordered priorities. Indeed, we found evidence in both experiments that
priority affects the precision of working memory in a monotonic fashion. Our results demonstrate that
representations of priority may provide a mechanism by which resources can be allocated to increase

the precision with which we encode and briefly store information.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Our ability to accurately remember what we have just seen is
surprisingly vulnerable to massive failures (Rensink, 2000). Even
using simple stimuli, we can only reliably remember three to four
items after a very short intervening delay (Luck & Vogel, 2013), and
using more complex stimuli, capacity shrinks even further. The
amount of visual information or details places limits on the capac-
ity of visual working memory (Alvarez & Cavanagh, 2004; Fougnie,
Asplund, & Marois, 2010). Moreover, the precision of working
memory representations declines as the number of items that are
currently being maintained increases (Anderson, Vogel, & Awh,
2011; Bays & Husain, 2008; Wilken & Ma, 2004). Less precise
encoding or noisy sustained representations may underlie the loss
of precision that accompanies near capacity loads (Anderson,
Vogel, & Awh, 2011; Bays & Husain, 2008; Wilken & Ma, 2004).
Overall, there appears to be a tradeoff between the quality of an
internal representation and the amount of information repre-
sented. Although the dominant models of visual working memory
capacity differ on how they propose that short-term memory
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resources are distributed, they share the notion that precision is
sacrificed as capacity limits are approached (Bays & Husain,
2008; Zhang & Luck, 2008).

The precision of visual working memory may depend on how
we distribute our attentional resources. Endogenous attention
can indeed be flexibly controlled depending on task goals
(Sperling & Melchner, 1978). For example, changes in the validity
of an endogenous cue cause equivalent changes in visual discrim-
inability and speed of information accrual at the cued location
(Giordano, McElree, & Carrasco, 2009). Therefore, how we allocate
attentional resources may represent a shared mechanism that
drives the variability observed in visual working memory precision
(Melcher & Piazza, 2011) and the variability in more basic visual
acuity (Herwig, Beisert, & Schneider, 2010).

Previous working memory studies have shown that spatial cues
that predict which single item from an array of items is likely to be
later tested increases the likelihood that the cued item will be cor-
rectly recalled (Bays & Husain, 2008; Gorgoraptis et al., 2011;
Zhang & Luck, 2008). Allocating more resource to the cued item,
which is prioritized, is thought to result in a representation with
greater precision. However, we need to make an important distinc-
tion between the use of the word priority and the theory of priority
maps. The previous studies suggest that an item can be given pri-
ority, which may be akin to shifting a “spotlight” of attention to
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that item. However, priority map theory posits that bottom-up
salient visual properties combine with top-down goals to form
an integrated map of a continuous rank-ordered representation
of all stimuli in the visual field (Bisley & Goldberg, 2010; Itti &
Koch, 2001; Serences & Yantis, 2006; Thompson & Bichot, 2005).
Based on this theory, we predict that working memory precision
will be proportional to the rank-ordered priorities of items and
not just the single most prioritized item. This distinction has
important theoretical implications for how we model the effects
of priority on working memory.

Here, we ask how we control the precision with which we store
information when faced with severe capacity limitations. How
does prior knowledge or task demands help prioritize the precision
with which we encode and store information? We test the hypoth-
esis that prioritizing a set of items results in rank-ordered preci-
sions in the quality of the working memory representations. We
conducted two psychophysical working memory experiments that
manipulated the attentional priority of items (Fig. 1). In Experi-
ment 1, we varied priority by varying the probabilities with which
memorized items were likely to be tested. Previous studies have
only used cueing to give an item special status. We aimed to
extend the effects of priority beyond simple cueing. In Experiment
2, we varied priority by varying monetary incentives contingent
upon successful memory for items tested. In both experiments,
despite differences in experimental manipulation, working mem-
ory precision tracked the priority of the multiple items.

2. Materials and methods

We conducted two psychophysical experiments that manipu-
lated priority in two different ways. Both experiments were
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designed to test how changes in attentional priority affect the pre-
cision of working memory representations (Fig. 1). We formalized
our hypotheses using a simple signal detection model that limits
the precision of working memory representations as a function of
priority. We use the output of this model to make predictions
about our empirical data. In Experiment 1, we varied the learned
probability with which an item in working memory would later
be tested. In Experiment 2, we varied the monetary incentives asso-
ciated with correctly remembering different items in working
memory.

2.1. Model simulation

We hypothesize that priority has a direct influence on the pre-
cision of the working memory representation of the target’s loca-
tion. We formalize this hypothesis with a simple signal detection
model of task performance that assumes two independent vari-
ables, the actual location of the target, L;, and the difference
between the target and the probe, D (see Figs. 1 and 2A). The loca-
tion of the probe is simply calculated as L, =L; +D. Target and
probe locations, s; and s respectively, were drawn from noisy dis-
tributions of the actual locations to simulate internal neural repre-
sentations of these locations. Thus, we generated s; and s, by
drawing samples from a normal distribution centered at L; and
L,, respectively. Importantly, we set the variance around the target
location to be equal to 1 minus the priority of that target, as
instructed in the experiment. For example, the variance of the
Gaussian distribution for a low priority target (i.e., cue probability
of 0.25; incentive value of $0.25) was set to 0.75. For a high priority
target (i.e., cue probability of 1.0; incentive value of $1) the vari-
ance was set to 0.1, to avoid 0. We also assumed a lower variance
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Fig. 1. Schematic of working memory tasks. In both Experiments 1 and 2, participants encoded the locations of four sequentially and randomly presented dot locations. After
a retention interval during which the items were maintained in working memory, the memory for one of the locations was tested. A probe dot was presented near one of the
cued locations and participants decided whether the probe was displaced to the left or right of the cued location. Feedback was given. The table inset details how dot color
was used to cue the priority of the item in Experiments 1 and 2. In Experiment 1, the color indicated the probability with which the dot’s location would be later probed. In
Experiment 2, the color indicated the monetary reward if that item was tested and correctly answered.
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Fig. 2. Model of how priority affects working memory precision. (A) Example where a target item (red dot, L,) has a priority of 0.75, and must be compared to the probe’s
location (L,; note that for illustration purpose the probe is black, but in the experiment is was the same color as the target). The model assumes that the internal
representation of the target location is a Gaussian probability distribution whose variance (¢2) is a function of the item’s priority. Performance is determined by comparing a
sample from the target’s internal representation (s;) and a sample from the probe’s internal representation (s;) to decide whether the probe is to the left or right of the target.
(B) For comparison, consider a trial in which the target (blue dot) has a lower priority of 0.25. Assuming the location of s,, any s; in the shaded area would result in an error.
Notice how the probability of making an error is a function of the variance, which is directly related to precision. (C) Model data showing the mean (+SD) probability of a
rightward response given that the probe was to the right of the target, separately for each priority. The inset plots the slopes of the cumulative Gaussian functions.

of 0.1 for the probe’s location since its representation does not
depend on memory given that it is visible at the time of the deci-
sion. The differences between s; and s, were used to generate
response decisions. For each condition, we sampled from the
model 1000 times for each of the 41 bins across D from —2° to
2°. In line with our hypothesis, we assumed that the precision with
which the location is encoded (and/or maintained) is directly pro-
portional to the variance of the Gaussian distribution from which
s; and s, were sampled. Since the variance is proportional to
the slope of the psychometric function, the slope is a measure
of the precision of the working memory representation. Note that
the model is a simplified one of the full task structure. It does
not model the priorities of all four cued locations, and only models
the probed locations. This simplification reduces the calculations
while it still allows us to make specific predictions based on our
hypothesis.

2.2. Experiment 1

2.2.1. Participants

We recruited 9 participants (six females) ranging in age from 24
to 44 years with normal or corrected to normal vision that were
neurologically healthy. All participants gave informed consent in
accord with the Human Subjects Institutional Review Board at
the New York University, and were remunerated for their time at
rate $10 per hour. One participant was excluded from the analysis
due to technical problems with eye movement recording.

2.2.2. Apparatus

We presented stimuli on a gray background in a dimly lit room
on 20-in. screen with refresh rate 75 Hz (Samsung 205BW). Partic-
ipants sat 70 cm from the screen with their head in a chin rest
while we recorded their eye movements at a frequency of
1000 Hz (EyeLink 1000, SR Research, Mississauga, ONT) and
responded using two keys. The procedures were programmed in

MATLAB (The Math Works, Natick, MA) using the MGL toolbox
(http://gru.brain.riken.jp/mgl).

2.2.3. Working memory task — probability manipulation

We first briefly presented four colored dots, and then after a
short retention interval, we tested the subject’'s memory for the
precise location of one of the dots (Fig. 1). The colors of the dots
indicated the probability with which a dot’s location would later
be tested and was our manipulation of priority. White, red, blue
and black circles (0.2° diameter; RGB color space) were associated
with 1, 0.75, 0.25 and 0 probability, respectively. On each trial,
a red cue [0.75] was always accompanied by a blue [0.25]
and two black [0] ones, or a white cue [1] was accompanied by
three black [0] ones. In both cases the probabilities sum to one.
The locations of black dots were never tested, since they were
associated with a zero probability. Each of the four dots appeared
in separate quadrants at an average of 9° radius (+1° jitter) from
central fixation. Cardinal locations (20° from the horizontal
and vertical axes) were excluded to reduce the chance that
the locations would be converted into verbal representations
(e.g., “left™).

Each trial commenced with a 200 ms fixation cross that alerted
the participant of a new trial. Then, four colored dots were each
briefly presented for 200 ms in sequence. They were presented in
a random sequence to reduce the chance that a gestalt shape
would be used to represent the locations of the dots (Jiang,
Olson, & Chun, 2000). The dots were followed by a variable 500-
1500 ms retention interval during which participants were asked
to maintain in working memory the dot locations while taking into
account the relative probability of the cues being probed. Four dots
were chosen as this number is right at the typical border of capac-
ity limits in visual working memory (Luck & Vogel, 1997). We rea-
soned that a load near capacity limits would motivate the
participant to allocate their attentional resources necessary to pre-
cisely encode and maintain the locations in a manner that matched
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the probability with which the locations would be tested. To test
working memory precision, we used a two alternative forced
choice (2AFC) procedure. After the delay, participants indicated
with a button press whether a probe dot was located to the left
or right of one of the cued locations. The locations probed veridi-
cally matched the probability structure of the color cues associated
with the dots. Participants had 1200 ms to respond. After this time,
feedback was given (i.e., “Correct”, “Incorrect” or “Timeout” if the
response was not recorded within the deadline) followed by a
1000 ms long inter-trial interval (ITI).

Participants were instructed to keep their gaze on the fixation
point. Compliance was monitored with an eye tracker and trials
in which participants broke fixation during the trial were excluded.
Three independent staircases (3-up 1-down) controlled the dis-
tance between the target and probed locations and were designed
to bring participants’ performance to ~79% correct responses sep-
arately for non-zero probability cues, that is white (1), red (0.75)
and blue (0.25). Participants were informed that the distance
between targets and the probe might vary depending on their per-
formance, but were encouraged to respond as quickly as possible
while maintaining the best possible performance. Before the
experiment, participants took part in a training session during
which they learned the associations between the colors cues and
probabilities. After training, participants completed 600 trials in
two separate sessions held at maximum 1 week apart. Each session
was approximately 1 h long.

2.2.4. Analysis

Before performing the main analysis, we removed trials with
missing responses and those with reaction times below 100 ms.
Next, for each probability condition, we measured the proportion
of trials of which the observer reported that the probe was to the
right of the cue as a function of the distance between the cue
and the probe. The exact bins were chosen to maximize the num-
ber of observation in each bin across the range of target-to-probe
distances. Because of the separate staircases, this resulted in differ-
ent bins across the different conditions. Next, for each individual
participant, we fit logistic psychometric functions to the response
data using maximum likelihood estimation to recover the thresh-
old (a) and slope (b) parameters (Wichmann & Hill, 2001). We used
bootstrapping procedures to estimate the standard errors (SE)
associated with these estimated parameters (Prins & Kingdom,
2009). To do so, we first generated simulated performance data
for across the target-to-probe distance bins based on the logistic
functions derived from the experiments. Then, we refit logistic
functions to the simulated data to obtain sampling distributions
of the parameters. We repeated this procedure 1000 times to cre-
ate a distribution from which we derived the SE of estimate. We
then used the group averages of these parameters estimated from
individual participant data to derive the logistic functions and
slope parameters in Fig. 3. Here, we focus on the slope and not
threshold parameters as our index of working memory precision
similar to past investigations (Bays & Husain, 2008). The slope
parameter of the psychometric function is a dynamic index of
the rate with which performance changes as a function of target-
to-probe distance. As the slope increases, performance improves
faster across increasing target-to-probe distances. This means that
larger slopes indicate greater working memory precision. To assess
whether the slope value increases monotonically with cue proba-
bility we fit a first order polynomial using least squares regression
to mean slope values for each condition and each observer. Signif-
icance was based on a randomization test where we generated a
null distribution of responses to which we compared our experi-
mental results. For each observer, we randomly shuffled the labels
(e.g., 1.0, 0.75, 0.25) of the cue probabilities that were probed and
recomputed the linear fit to the slope parameters. We repeated this

procedure 1000 times to generate the permuted null distribution
for hypothesis testing.

2.3. Experiment 2

2.3.1. Participants

In the second study, we studied six participants (three females)
ranging in age from 24 to 44 years of age with normal or corrected
to normal vision that were neurologically healthy. All participants
gave informed consent in accord with the Human Subjects Institu-
tional Review Board at the New York University, and were remu-
nerated for their time at rate $10 per hour plus a bonus based on
their performance (see details below).

2.3.2. Apparatus
We used the same hardware, eye tracking, and software as in
Experiment 1.

2.3.3. Working memory task - incentive manipulation

As in the first experiment, after a short retention interval, we
tested the precise location of one of several briefly presented col-
ored dots (Fig. 1). However, in the second experiment the colors
indicated the monetary incentive associated with correctly
remembering an item. Overall, the experiment was very similar
in structure to the cue probability experiment in Experiment 1.
The stimuli were identical physically. Participants underwent
extensive practice. An eye tracker was used to ensure fixation com-
pliance. Participants were given the same instructions as those in
Experiment 1, except for the interpretation of cue colors. The dot
colors were now associated with monetary rewards (white = $1,
red = $0.75, blue = $0.25 and black = $0) contingent upon correct
performance. On each correct trial, participants gained the dollar
amounts associated with the target’s cued value. On incorrect tri-
als, they received no amount. Each dot, regardless of its value,
had an equal probability of being tested. In Experiment 2, we better
sampled the full range of target-to-probe distances including large
and small values to better cover the ends and middle of the psy-
chometric curves. For each block of trials, we began with target-
to-probe distances initialized to either 2.2° or 0.1°. We again used
independent staircases (3-up, 1-down) that ensured an overall
accuracy of ~79% correct within each value condition. Participants
were encouraged to allocate their attentional resources in a man-
ner that maximized their economic gain. Feedback regarding
whether the response was “Correct,” “Incorrect,” or “Timeout”
was given after each trial, and at the end of blocks of 50 trials,
the total amount of won dollars for that block was displayed to
the participant. After the experiment (400-500 total trials), we
randomly chose one of the blocks as a bonus to be paid to the par-
ticipant. Since the performance level was held approximately con-
stant with the staircase procedures, the average bonus across
participants was always just over $20 and averaged $24.

2.3.4. Analysis

For each incentive condition, we measured the proportion of tri-
als in which the observer reported a probe on the right side of the
target as a function of the distance between the target and the
probe. Our procedures for measuring the effect of the target cue’s
incentive on working memory precision were identical to Experi-
ment 1.

3. Results

First, we illustrated our hypothesis that priority affects the pre-
cision of working memory representations by predicting task per-
formance based on a signal detection model. Then, we conducted
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Fig. 3. Performance on the working memory tasks. (A) Experiment 1. The probability that a displacement to the right would be judged rightward as a function of the actual
target-to-probe distance (D). Psychometric curves for each of the cue probabilities of 1.0 (white), 0.75 (red), and 0.25 (blue) are estimated from logistic functions constructed
by averaging each participant’s slope and threshold parameters. Each dot represents the mean probability of a rightward response across participants at bins of the difference
in the target-to-probe distance. The inset plots the mean slopes (+1 SE) of these functions. (B) Experiment 2. Same as in 2A, however, the curves are fit to the separate reward
incentives of $1 (white), $0.75 (red), $0.25 (blue), and $0 (black). In both experiments, the slopes of the functions increase with increasing priority indicating that precision

increases as a function of the priority of items in the display.

two psychophysical experiments that were designed to test how
changes in attentional priority affect the precision of working
memory representations. In both experiments, the precision of
working memory representations was greater for items with
higher priority, in accord with the predictions from our simulation.
Attentional priority had clear effects on working memory precision
both when priority was manipulated by changes in probability and
incentive.

3.1. Model simulation

We modeled working memory representations as probability
distributions centered on the target’s location. The variance of
the distribution controlled the precision of the representation. Pri-
ority was proportional to precision, where items associated with
greater importance were encoded/maintained with greater fidelity
(Fig. 2A and B, for detailed description of the model see Section 2.1).
The model simulations produced choice behavior that we used to
make specific predictions about the empirical results from our
two psychophysical studies. The model predicted that performance
accuracy would increase in each condition as the target-to-probe
distance increased. As modeled, priority affected the slope of the
fitted responses (Fig. 2C). Slope steepness increased as priority
increased. Since the variance is proportional to the slope of the
psychometric function, the slope is a measure of the precision of
the working memory representation. A smaller variance is equiva-
lent to a steeper psychometric function, which indicates a more
precise memory for the location.

3.2. Experiment 1

We varied the probability with which an item in working mem-
ory would later be tested as a manipulation of priority. Overall,
participants performed the task well based on simple descriptive
statistics of their choice behavior (Table 1). Our main hypothesis,
however, depends on measuring the precision with which items

are represented in working memory. To this end, we first fit logistic
functions to the response data for each individual participant sep-
arately for each cue probability. We use the slopes of these func-
tions as our measure of precision. Larger slopes are proportional
to greater working memory precision. As illustrated in Fig. 3A, in
each condition performance improved as the distance between tar-
get and probe locations increased. Importantly, the fitted psycho-
metric functions differed in their slope estimates (Fig. 3A, inset).
The precision of probed items increased linearly as a function of
the probability that an item would be later tested. The slope of this
linear function was significant based on a randomization test
(p<0.001; none of the 1000 randomizations yielded a slope
greater than the actual slope).

One caveat with Experiment 1 stems from the fact that the
probabilities associated with the presented items during each trial
summed to 1. This introduced differences in working memory load
between experimental conditions. For instance, when a stimulus
was associated with a 100% probability of being tested, observers
could ignore the other three dots possibly resulting in an effective
load of one. On other trials, when the probabilities were 25% and
75%, the load was effectively two. Therefore, better performance
on 100% probability trials could be due to a lower load. However,
load cannot explain the differences in performance between the
75% and 25% conditions, as these were matched for load. Another
minor caveat stems from the fact that participants found the
experiment challenging and had difficulty discriminating the
direction of the displacement when the probe was less than a
1/2 of a degree from the target. The staircase procedure, which
focuses on sampling around the threshold to optimize estimation
of the psychometric function’s parameters, resulted in few obser-
vations for very small target-to-probe distances where behavior
is typically at chance levels. Although data well below 79% thresh-
olds may have had less influence on the slope estimates than data
around and above thresholds, it is highly unlikely that the relative
slopes across conditions would possibly change if this small area
had been better sampled. Nonetheless, we controlled for these
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Table 1
Descriptive statistics for Experiment 1 and Experiment 2.
Priority
0 0.25 0.75 1
Cue probability
Exp. 1 Accuracy N/A 0.79 (0.40) 0.81 (0.38) 0.82 (0.39)
Mean (SD)
Reaction time [ms] N/A 669.9 (171.9) 617.8 (145.4) 599.3 (141.4)
Mean (SD)
Target-to-Probe distance [°] N/A 1.16 (0.42) 0.94 (0.32) 0.82 (0.21)
Mean (SD)
Incentive
Exp. 2 Accuracy 0.67 (0.47) 0.69 (0.46) 0.67 (0.47) 0.69 (0.46)
Mean (SD)
Reaction time [ms] 712.9 (138.1) 733.1 (149.6) 725.0 (146.3) 666.1 (151.3)
Mean (SD)
Target-to-Probe distance [°] 0.96 (0.50) 0.91 (0.52) 0.83 (0.47) 0.76 (0.47)
Mean (SD)

potential problems in a second experiment where we improved
our staircase procedures and kept the working memory load con-
stant, but still manipulated the priority of multiple items.

3.3. Experiment 2

In Experiment 2, we varied the monetary incentive associated
with correctly remembering an item in working memory as a
manipulation of priority. Similar to Experiment 1, participants per-
formed the task well based on simple descriptive statistics of their
choice behavior (Table 1). Again following the same procedures, we
use the slopes of fitted logistic functions as a measure of the preci-
sion with which items are represented in working memory. As
depicted in Fig. 3B, performance improved as the distance between
the target and probe locations increased for each condition. As in
Experiment 1, we find that the slopes of the fitted functions differ
across the conditions (Fig. 3B, inset), even though the memory load
remained constant. The precision of the probed items increased
linearly as a function of the reward values associated with those
items. Although the slope is not as steep as in Experiment 1, it
was significant based on a randomization test (p <0.003), and
therefore replicates the finding.

4. Conclusions

The capacity of visual working memory is severely limited (Ma,
Husain, & Bays, 2014). In two psychophysical experiments, we
tested the hypothesis that prioritizing a subset of items determines
the precision of their representation in working memory. We
manipulated priority in different ways in each study. In Experi-
ment 1, we varied the probabilities with which memorized items
were likely to be tested. In Experiment 2, we varied rewards con-
tingent upon successful memory for items tested. Both experi-
ments showed that priority determined working memory
precision. We also formalized our hypothesis using a simple gener-
ative computational model whose output matched our empirical
data. Our results demonstrate that priority can affect the precision
with which we store information and may be a means by which we
offset the costs of this limited capacity system. In essence, we
found that our observers were able to prioritize the precision with
which they encoded and stored information about multiple items
in a way that tracks the relative priorities of the array of items.

4.1. Relationship to previous studies

Few studies have directly investigated the influence of priority
on the precision of visual working memory. Indeed, spatial cues

that predict which single item from an array of items is likely to
be later tested increases the probability that the cued item will
be correctly recalled (Bays & Husain, 2008; Maxcey-Richard &
Hollingworth, 2013; Zhang & Luck, 2008). For instance, cueing that
one item is more likely to be tested leads to a recall advantage for
that item, and that advantage comes at a cost for other items
(Gorgoraptis et al., 2011). These previous results are consistent
with two possible alternatives. First, memory precision may scale
with priority, as we advocate here. Alternatively, since the past
studies contrasted only two items with differing priorities (e.g.,
high versus low probability of being tested), memory precision
may simply be high for the most prioritized item and low for all
other items regardless of their relative priority. Here, we demon-
strate that variability in the priorities of multiple items affects
memory precision in a matching fashion. As priority increases, so
does memory precision.

Using monetary incentives, Zhang and Luck (2011) failed to find
evidence that such incentives affected the precision of visual work-
ing memory. In contrast, we observed differences in the fidelity of
recall, which tracked the incentive associated with each item in the
memory array. We argue that these differences may be due to dif-
ferences in experimental procedures. Zhang and Luck (2011)
rewarded correct performance in general to test if motivation
could affect the precision or amount of information in working
memory. We provided incentives associated with individual items
in the memory array. In our experiment, to maximize gain one
should allocate memory resources proportional to the money asso-
ciated with each item. Our results support this strategy. Moreover,
the reward schedules for each experiment were different. In our
experiment, we explicitly asked observers to treat each trial inde-
pendently, since their total earnings were based on a fixed number
of randomly chosen trials. In Zhang and Luck’s experiment, observ-
ers were able to track accumulating rewards during feedback after
each trial. Therefore, the amount of incentive at stake on a given
trial was a variable fraction of the total earnings, which may
decrease motivation to respond accurately at the end of the block.
Together, these studies indicate that we cannot memorize more
items or items with greater precision by simply increasing our
effort. In other words, we cannot at will increase the seemingly
finite resources associated with capacity limits. However, our find-
ings demonstrate that we can distribute these resources flexibly
based on priors (e.g., cue probability) and goals (e.g., incentive)
to best compensate for capacity limitations in working memory.
Importantly, differences in priority across the visual field may be
the means by which we sculpt the allocation of resources that sup-
port memory. With that said, we do not believe such strategic allo-
cation can completely overcome resource limitations, but is an
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important mechanism to best compensate for these limits in
capacity.

4.2. Potential neural mechanisms

There have been several theoretical accounts of the mecha-
nisms by which priority is represented in the brain (Bisley &
Goldberg, 2010; Gottlieb, 2007; Ptak, 2012; Serences & Yantis,
2006; Thompson & Bichot, 2005). Recently, we defined spatial
topographic maps in the frontal and parietal cortices of humans
and showed that neural responses in these spatial maps tracked
the priority of items defined by either the location of an item in
working memory, the locus of attention, or the goal of a saccade
plan (Jerde et al., 2012). The activity in prioritized maps of space
may bias the precision with which visual information is encoded
in the brain through its top-down influences over visual neurons
whose receptive fields match the prioritized locations (Jerde &
Curtis, 2013). Recently, Bays created a computational model in
which populations of neurons tuned to features encoded in spiking
activity represent working memory items (Bays, 2014). In this
model, a simulated top-down signal increases drive in the neurons
representing a prioritized item, which in turn mimics the tradeoff
in memory precision. Therefore, a read-out of representations of
priority may provide a mechanism by which resources can be
dynamically and flexibly reallocated to increase the precision with
which we encode and store information in working memory. The
reallocation may be particularly important as capacity is taxed in
a limited resource systems like working memory.

4.3. Summary conclusions

We measured visual working memory precision for multiple
items associated with rank ordered priorities and found that preci-
sion consistently increased monotonically with priority. Based on
these results, we conclude that visual working memory resources
may be flexibly allocated across multiple items. Follow-up studies
should investigate how priority’s influence on precision changes as
working memory load varies across capacity limits. This will allow
one to characterize how dynamic the influence of priority is in
response to the demands of reaching and surpassing working
memory capacity.
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