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Although previous studies point to qualitative similarities between working memory (WM) and attention, the degree to which
these two constructs rely on shared neural mechanisms remains unknown. Focusing on one such potentially shared mecha-
nism, we tested the hypothesis that selecting an item within WM utilizes similar neural mechanisms as selecting a visible
item via a shift of attention. We used fMRI and machine learning to decode both the selection among items visually available
and the selection among items stored in WM in human subjects (both sexes). Patterns of activity in visual, parietal, and to a
lesser extent frontal cortex predicted the locations of the selected items. Critically, these patterns were strikingly interchange-
able; classifiers trained on data during attentional selection predicted selection from WM, and classifiers trained on data dur-
ing selection from memory predicted attentional selection. Using models of voxel receptive fields, we visualized topographic
population activity that revealed gain enhancements at the locations of the externally and internally selected items. Our
results suggest that selecting among perceived items and selecting among items in WM share a common mechanism. This
common mechanism, analogous to a shift of spatial attention, controls the relative gains of neural populations that encode
behaviorally relevant information.
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Significance Statement

How we allocate our attention to external stimuli that we see and to internal representations of stimuli stored in memory
might rely on a common mechanism. Supporting this hypothesis, we demonstrated that not only could patterns of human
brain activity predict which items were selected during perception and memory, but that these patterns were interchangeable
during external and internal selection. Additionally, this generalized selection mechanism operates by changes in the gains of
the neural populations both encoding attended sensory representations and storing relevant memory representations.

Introduction
Although theories of attention and working memory (WM) of-
ten emphasize their interrelatedness (Cowan, 1998a; Awh and
Jonides, 2001; Oberauer, 2002; Chun, 2011; Gazzaley and Nobre,
2012), they are typically studied in isolation. Several lines of

empirical evidence highlight commonalities between attention
and WM. For example, attention and WM share similar capacity
and resource limitations (Cowan, 1998b; Marois and Ivanoff,
2005; but see Fougnie and Marois, 2006) and engage similar
brain regions (LaBar et al., 1999; Pollmann and von Cramon,
2000; Awh and Jonides, 2001; Ranganath and D’Esposito, 2005;
Ikkai and Curtis, 2011; Jerde et al., 2012). Moreover, the process
of rehearsing items (Awh et al., 1999, 2000; Awh and Jonides,
2001; Jha, 2002; Postle et al., 2004; Theeuwes et al., 2005; Katus
et al., 2014; Shen et al., 2015; Souza et al., 2020) and suppressing
distracting information (Gazzaley et al., 2005; Sreenivasan and
Jha, 2007) in WM may be attention-based. In turn, representa-
tions in WM can guide how we attend to sensory information
(Olivers et al., 2006; Woodman and Luck, 2007; Gayet et al.,
2013; Bahle et al., 2020; Sasin and Fougnie, 2020; Williams et al.,
2022). However, since attention and WM are complex processes
involving multiple cognitive operations, it remains unclear which
underlying components may be shared between the two. Here,
we focus on the process of selection, which refers to how task-
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relevant information is prioritized over task-irrelevant informa-
tion in both attention and WM. Critically, selection helps miti-
gate the strict resource or capacity limitations of attention and
WM (Marois and Ivanoff, 2005).

The notion that a common process both selects among exter-
nal sensory information and among internal WM representa-
tions is intriguing because it appeals to an intuitive common
mechanism used to highlight relevant information. Nonetheless,
there is little evidence linking attentional selection and WM
selection. Researchers have intensively investigated atten-
tional selection using pre-cueing paradigms, where a cue
indicates which forthcoming stimulus to attend (Posner,
1980; Eriksen and Yeh, 1985; Murphy and Eriksen, 1987).
Behaviorally, pre-cueing benefits the processing of selected
information (Carrasco et al., 2000; Pestilli et al., 2009) at the
cost of the processing of unselected information (Pestilli and
Carrasco, 2005; Pestilli et al., 2007). Both neurons (Bushnell
et al., 1981; Luck et al., 1997; Reynolds et al., 2000; Bisley and
Goldberg, 2003) and voxels (Gandhi et al., 1999; Hopfinger
et al., 2001; Liu et al., 2005; Serences and Boynton, 2007;
Silver et al., 2007; Ikkai and Curtis, 2008) with receptive
fields that match the locations of pre-cued items exhibit
increased activity relative to those that match the locations of
unattended items. Theories of selective attention, including
computational models, posit that the benefits of attention
stem from gain enhancements within the populations of neu-
rons encoding selected task-relevant stimuli (Reynolds and
Heeger, 2009; Carrasco, 2011). To study the process of selec-
tion in WM, researchers have used retro-cueing experimen-
tal paradigms, where a cue presented after WM items have
been encoded signifies which memorandum will later be
tested (Griffin and Nobre, 2003). Behaviorally, the quality of
memory is better for the retroactively cued item compared
with noncued items (Griffin and Nobre, 2003; Landman et
al., 2003; Souza et al., 2016; Li et al., 2021). Neurally, WM rep-
resentations are enhanced within the neural populations encoding
the selected WM item (Lepsien et al., 2011; Sprague et al., 2016;
Ester et al., 2018; Yoo et al., 2022).

We directly tested the hypothesis that a common neural
mechanism underlies attentional and WM selection using fMRI
and machine learning. Remarkably, classifiers trained on each
type of selection were interchangeable in predicting the other,
providing novel quantitative evidence for theories that posit a
shared mechanism (Chun et al., 2011). In addition, using models
of voxel receptive fields to visualize population activity, we
observed elevated responses corresponding to the locations of
the externally and internally selected items, suggesting that the
shared selection mechanism involves differential gain.

Materials and Methods
Participants
Eleven neurologically healthy participants (ages 23–53; six females) with
normal or corrected-to-normal vision participated in this experiment.
The sample size was determined using previous fMRI studies comparing
selection on perceptual and WM representations (Nobre et al., 2004;
Tamber-Rosenau et al., 2011), and is equal to or larger than previous
studies that compared within-condition and across-condition decoding
performance of classifiers trained on fMRI data (Jerde et al., 2012;
Rademaker et al., 2019; Kwak and Curtis, 2022), as well as those that
used population receptive field (pRF)-weighted reconstruction analysis
(Kwak and Curtis, 2022; Yoo et al., 2022). Participants provided written
informed consent in accordance with procedures approved by the
Institutional Review Board at New York University.

Experimental design
We generated stimuli and interfaced with the MRI scanner, button box,
and eye tracker using MATLAB software (The MathWorks) and
Psychophysics Toolbox 3 (Brainard, 1997). Stimuli were presented using
a PROPixx DLP LED projector (VPixx) located outside the scanner
room and projected through a waveguide and onto a translucent screen
located at the head of the scanner bore. Participants viewed the screen at
a total viewing distance of 63 cm through a mirror attached to the head
coil. The display was a circular aperture with an ;32-degree of visual
angle (dva) diameter. A trigger pulse from the scanner synchronized the
onsets of stimulus presentation and image acquisition.

Participants performed a pre-cue task and a retro-cue task in the two
scanning sessions. The task procedures are illustrated in Figure 1A. The
fixation symbol in both tasks was a centrally-presented filled circle with
a 0.3-dva radius. Subjects were required to maintain fixation in the
center of the screen. Each pre-cue trial began with a 750-ms colored
central fixation (0.4-dva radius) with three black placeholders. The color
of the fixation indicated the target location in the upcoming stimulus
screen. The distance from the screen center to the center of each place-
holder was 6 dva, and the diameter of each placeholder was 8 dva.
The pre-cue was followed by a 1500-ms ISI (Inter-stimulus interval),
then by the stimulus for 1500ms. Stimulus presentation consisted of
three Gabor patches, one in each placeholder. The three placeholders
were in three different colors, and subjects had to select the target Gabor
in the placeholder with the pre-cued color. The three colors used in each
trial were randomly selected from four colors (RGB = [255, 0, 0], [0, 200,
0], [0, 0, 255], [255, 165, 0]) and randomly distributed across the three
locations (Left, Right, Bottom) so that the target location could not be
predicted by the representations of the pre-cue. The stimulus presenta-
tion was followed by a 750-ms mask to diminish iconic memory
(Sperling, 1960), then by a 3000-ms delay. This was followed by the pre-
sentation of a probe, which consisted of a circle and an oriented line.
The length of the line and the diameter of the circle were both 6 dva.
Subjects had to judge if the line was rotated clockwise or counterclock-
wise compared with the orientation of the selected Gabor. We adjusted
the difference between the orientations of target and probe to titrate the
behavioral performance to ;80%. Specifically, the difference between
the orientations of the probe and target started at 20° and either
increased by 1° after each error trial or decreased by 1° after four contin-
uous correct trials (cf. Levitt, 1971). Subjects responded by pressing “1”
for clockwise or “2” for counterclockwise. The probe screen lasted for
2250ms regardless of subjects’ responses. Subjects then received feed-
back consisting of the selected Gabor overlaid with the probe. The color
of the probe indicated whether the response was correct (green: correct;
red: incorrect). The intertrial interval lasted for 9750ms. Each retro-cue
trial began with a 1500-ms stimulus screen, which contained three
Gabor patches in three black placeholders. The stimulus was followed by
a 750-ms mask and a 1500-ms ISI. Following the ISI, subjects saw a
retro-cue consisting of three colored placeholders surrounding a colored
fixation. The color of the fixation point matched the color of one of the
placeholders and indicated the location of the target Gabor. The colors
on each trial were randomly selected from the four possible colors (see
above) and randomly distributed across the three locations. The delay,
probe, feedback, and intertrial interval were the same as those in the pre-
cue task. Each subject completed two scanning sessions consisting of 10
runs each, with five pre-cue runs and five retro-cue runs presented in an
interleaved order. Each run contained 18 trials, yielding 180 trials per con-
dition (90 per session). Each run started with 13 dummy TRs (9750ms)
of a central fixation screen to allow for magnetic field stabilization.

Eye movements
Eye position coordinates (x,y) and pupil size were recorded at 500Hz in
the scanner using an EyeLink 2k (SR Research). Before each scanning
session, eye position was calibrated using a 9-point calibration. Eye data
were preprocessed in MATLAB using the freely available iEye toolbox
(https://github.com/clayspacelab/iEye) using the following steps. (1)
Data were transformed from raw pixel screen coordinates into dva. (2)
Extreme values associated with loss of track and blinks were removed.
(3) Data were smoothed with a Gaussian kernel (5-ms SD). (4) Each trial
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was drift-corrected by taking the mean over known epochs when the
participant was fixating (the whole delay in pre-cue task, and the first
delay before the cue in the retro-cue task) and subtracting that value
from the entire trial.

fMRI methods
MRI data acquisition
Participants underwent three fMRI scanning sessions, two for the main
selection experiment and one for retinotopic mapping. All data were
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Figure 1. Methods, behavior, decoding analysis, and decoding results. A, Pre-cue task: fixation cued the task-relevant color. Then, three oriented Gabors appeared within a colored placeholder
ring. Participants encoded the Gabor whose ring color matched fixation. After a mask and delay, participants reported whether the orientation of the probe was tilted clockwise (CW; respond with
button 1) or counterclockwise (CCW; respond with button 2) to the memorized target orientation. Retro-cue task: participants encoded the orientations of three Gabors that were followed by a
mask and short ISI. Then a retro-cue indicated the task-relevant color. Participants were instructed to remember the orientation of the item at the location matching the fixation color and later com-
pare to the probe orientation. B, Probe task accuracy and probe change magnitude in pre-cue (blue) and retro-cue (red) conditions. Gray lines indicate individual subjects. The error bars denote 95%
bootstrap confidence interval (CI). C, Retinotopy for a representative subject. Color depicts voxels’ preferred polar angle projected to the cortical surface of the left hemisphere. D, Decoding perform-
ance across ROIs, for within-condition decoding of pre-cued location (upper left), retro-cued location (lower right), and cross-condition decoding of location (gray backgrounds). Gray dashed line indi-
cates chance accuracy (33.3%; colored: individual performance was significantly higher than chance, p, 0.05; one-sided, FDR false detection rate (FDR) corrected across all ROIs for each decoding
condition independently). The jittered dots indicate individual performance, filled dots indicate participants from whom decoding performance was higher than chance (p, 0.05, one-sided), and
unfilled dots indicate participants with at-chance decoding performance. The horizontal line in the violin indicates the mean of accuracy. The stars in the bottom of each plot indicate the group-level
performance is significantly higher than chance (***p, 0.001, **p, 0.01, *p, 0.05; one-sided, FDR corrected across all ROIs for each decoding condition independently).
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acquired at the NYU Center for Brain Imaging on a 3T Siemens
Prisma Scanner with a 64-channel head/neck coil. Functional scans
for the selection experiment were acquired using an EPI pulse
sequence with 44 slices and a voxel size of 2.53 mm (4� simultane-
ous-multi-slice acceleration; FoV = 200� 200 mm, no in-plane accel-
eration, TE/TR = 30/750ms, flip angle = 50°, bandwidth = 2290Hz/
pixel, 0.56-ms echo spacing, P ! A phase encoding). Data for the ret-
inotopic mapping session was acquired in a separate session at a higher
resolution, with 56 slices and a voxel size of 2.03 mm (4� simultaneous
multi-slice acceleration, FoV= 208� 208 mm, no in-plane accelera-
tion, TE/TR= 36/1200ms, flip angle = 66°, bandwidth = 2604Hz/pixel,
0.51ms echo spacing, P! A phase encoding). To correct for local spa-
tial distortions in the functional data offline, we estimated a field map
of the field inhomogeneities by acquiring pairs of spin echo images
with normal and reversed phase-encoding directions with an identical
slice prescription to the functional data and no simultaneous-multi-
slice acceleration (TE/TR= 45.6/3537ms, three volumes per phase
encoding direction). To enable precise localization of functional data,
we collected T1-weighted whole-brain anatomic scans using a MP-RAGE
sequence with 192 slices and a voxel size of 0.83 mm (FoV=256� 240
mm, TE/TR=2.24/2400ms, flip angle=8°, bandwidth=210Hz/pixel) for
each participant.

MRI data preprocessing
T1-weighted anatomic images were segmented and cortical surfaces
were constructed using the recon_all command in Freesurfer (version
6.0). Functional data were preprocessed with custom scripts using func-
tions provided by AFNI. First, we applied the B0 field map correction
and reverse-polarity phase-encoding (reverse blip) correction. Next, we
performed motion correction using a six-parameter affine transform,
aligned the functional data to the anatomic images, and projected the
data to the cortical surface. Spatial smoothing (5-mm FWHM on the
cortical surface) was applied to the retinotopic mapping data, but no
explicit smoothing was applied to the data from the selection experi-
ment. Data from the selection experiment was re-projected into volume
space, which incurs a small amount of smoothing along vectors perpen-
dicular to the cortical surface. Finally, we removed linear trends from
the time series data, and then normalized (z score) across all the time
points within each run.

Estimating selection-related blood oxygen level-dependent (BOLD)
activity
To identify activity related to selection in both our tasks, we used the
3dDeconvolve and 3dLSS commands in AFNI (https://afni.nimh.nih.
gov/) to implement a least-squares-separate general linear model (LSS-
GLM) to the preprocessed BOLD time series of the functional data. LSS-
GLM has been shown to isolate single-trial activity in rapid event-related
designs (Mumford et al., 2012; Arco et al., 2018). In the pre-cue condi-
tion, we modeled the selection, delay, and response events. The stimulus
event was not modeled because it overlapped with the selection event.
Based on previous estimates that symbolic central cues direct selection
within 300ms (Carrasco, 2011), we set the duration of the selection
event equal to one TR (750ms). The retro-cue model was similar to the
pre-cue model, except the selection event was time-locked to the 750-ms
retro-cue screen. Each event was modeled as a boxcar with the duration
of the event convolved with a hemodynamic response function (HRF;
GAM(10.9, 0.54) in 3dDeconvolve). The b coefficients for the selection
event in each trial were estimated separately, resulting in 180 GLM itera-
tions for each task condition. In each iteration, we modeled the selection
event on the trial of interest with a single regressor and the selection
events on all other trials with a separate regressor. The delay and
response events were modeled with one regressor each. Thus, the GLM
for each task condition included four regressors on each iteration (selec-
tion for the trial of interest, selection for all other trials, delay, and
response). In addition, the model included six regressors for head
motion and four regressors for data drift. The procedure was repeated
with each trial in turn serving as the trial of interest, resulting in 180
selection betas per condition. Selection betas were normalized via z-scor-
ing on a voxel-by-voxel and run-by-run basis before further analysis.

pRF mapping
pRF mapping was conducted using the procedures described previously
(Mackey et al., 2017). Participants maintained central fixation while cov-
ertly tracking a bar aperture that swept across the screen in discrete steps
in one of four orientations/directions: oriented vertically and traveling
from left to right or right to left, or oriented horizontally and traveling
from top to bottom or bottom to top. The bar aperture was divided
into three rectangular segments (a central segment and two flanking
segments) of equal sizes, each containing a random dot kinemato-
gram (RDK). Participants’ task was to identify which of the two flank-
ing RDKs had the same direction of motion as the central RDK. The
dot motions of all the three segments changed with each discrete step.
Participants reported their answer with a button press. We adjusted
the coherence of the RDK using a staircase procedure to maintain ac-
curacy at ;75%. Each session contained eight to nine runs, each 5-
min run consisted of 12 sweeps, and each sweep consisted of 12 dis-
crete steps (one step every 2 s). The order of the four sweep directions
was randomized within each run.

We fit the preprocessed BOLD time series for each voxel for each
participant using the compressive spatial summation model (Kay et al.,
2013):

r̂ðtÞ ¼ g

ðð
Sðx; yÞNð x; yð Þ; IsÞdxxy

2
4

3
5
n

;

where S is a binary stimulus image (1 in where the stimulus was pre-
sented and 0 in where the stimulus was not presented), Nððx; yÞ; IsÞ is a
normal distribution with mean ðx; yÞ and variance Is 2, where I is a two-
dimensional identity matrix describing a circular, symmetric Gaussian.
The parameters of this model are the voxel’s receptive field center ðx; yÞ
in dva, SD s in dva, amplitude g , and compressive spatial summation
factor n (where n � 1). Parameters were fit with a GPU-accelerated
course grid search over parameters, followed by a local optimization
method.

Voxels’ preferred phase angle (arctanðx
y
Þ) and eccentricity

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
) were visualized on the cortical surface. To define retinotopi-

cally organized regions of interest (ROIs), we restricted our analysis to
voxels with .10% response variability explained by the pRF model. We
then drew ROIs on each participant’s cortical surface using reversals of
the voxels’ preferred phase angle as boundaries between neighboring vis-
ual regions (Mackey et al., 2017). We defined four ROIs in anterior and
dorsal visual areas (V1–V3AB), four ROIs along the caudal–rostral intra-
parietal sulcus (IPS0–IPS3), and two ROIs along the dorsal-ventral pre-
central sulcus region (sPCS and iPCS), each with a full visual field
representation (for an illustration of the ROIs for one subject, see Fig.
2A). Further fMRI analyses were conducted in ROIs that combined
regions which share a foveal confluence (V1, V2, and V3; IPS0 and IPS1;
IPS2 and IPS3; Wandell et al., 2005, 2007; Mackey et al., 2017). We also
combined voxels in sPCS and iPCS into a single PCS ROI to roughly
match the size of our other ROIs, although the results were comparable
for the individual PCS ROIs.

Decoding analyses
We examined whether the machine learning algorithm trained by selec-
tion-related activity in the pre-cue task can decode the internally selected
location in the retro-cue task, and vice versa. To decode the selected
location, we trained sparse multinomial logistic regression (SMLR) clas-
sifiers in MATLAB using the Princeton MVPA toolbox (http://www.
csbmb.princeton.edu/mvpa). The SMLR classifier is widely used to
decode multiclass conditions (Krishnapuram et al., 2005; Pereira et al.,
2009). The z-scored b coefficients for the selection event in each trial
estimated using the LSS-GLM were used to train the classifiers. First, the
classifiers were tested on the dataset in the same task condition as train-
ing (i.e., within-condition decoding) to examine whether the neural rep-
resentations we extracted could predict the selected location (Fig. 1C).
Since there were three possible locations, we used a leave-three-trials-out
cross-validation scheme, in which the classifier was trained on the data
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from all but three trials (one for each location) and then tested on the
left-out trials in one task condition for each cross-validation fold, result-
ing in 60 cross-validation folds. Decoding accuracy was computed by
comparing the true location labels with the classified labels across the 60
cross validations. Next, the classifier was trained on all of the data from
one task condition and tested on each trial from the other task condition
(i.e., across-condition decoding) to examine whether the neural repre-
sentations were comparable in the two task conditions. To increase the
reliability of our decoding estimates, we repeated the entire procedure 10
times, taking the mean of the decoding accuracy across iterations as the
final within-condition and across-condition decoding accuracy.

To estimate the BOLD activity for selection and memory phases in
the task, we computed the time series of decoding performance. We seg-
mented the z-scored preprocessed BOLD time series from 0 to 21 s (i.e.,
the end of ITI (Inter-trial interval)) relative to the trial onset, and trained
classifiers separately using the BOLD signal averaged across every 2 TRs.
One set of classifiers was trained to decode target location, signifying the
selection process, while the other set of classifiers was trained to decode
target orientation, signifying the maintenance process. Decoding of the
target location was conducted using the leave-three-trials-out cross-
validation scheme described above, while decoding of target orientation
was conducted using a leave-six-trials-out cross-validation scheme, cor-
responding to the six possible Gabor orientations.

Estimating population-level activity modulation
We tested whether external and internal selection both cause an activity
increase in voxels whose receptive fields match the selected item’s loca-
tion relative to the unselected items’ locations. To estimate the response
of the neural populations at the selected location, we reconstructed a
pRF-weighted map using the selection-related activity. This procedure
essentially projects voxel activity in each ROI to visual space in screen
coordinates (Kok and de Lange, 2014; Kwak and Curtis, 2022; Yoo et al.,
2022). In each ROI, for every selected location (left, right, bottom) in
each task condition (pre-cue, retro-cue), we created a reconstructed map
using

X
wiððx; yÞ; IsÞb i;

where wiððx; yÞ; IsÞ is the weight associated with the ith voxel at loca-
tion ðx; yÞ, and b i is the averaged GLM-acquired selection period b at
voxel i in trials with the same selected location. We defined wi as the
receptive field of voxel i, which was a two-dimensional Gaussian with

mean ðmx;myÞ and variance Is 2, where I. is a two-dimensional identity
matrix describing a circular, symmetric Gaussian (Fig. 3A). For each
pRF-weighted selection activity map, we calculated the mean of selec-
tion-related activity in the selected and nonselected locations, and aver-
aged across three target location conditions. The activity difference
between the selected and nonselected locations was taken as the activity
modulation because of selection.

Relationship between decoding results and population-level activity
modulation
To investigate the relationship between our decoding results and popula-
tion reconstructions, we conducted a median split of trials based on the
magnitude of population-level modulation for the selected location and
compared the relative classifier activation for the selected location for
low-modulation and high-modulation trials. Classifier activation for
each spatial location was calculated as the sum over voxels of the classi-
fier training weights assigned to each voxel multiplied by the BOLD ac-
tivity on a given trial, and was normalized to sum to 1 over the three
classes. We used the relative classifier activation (where higher activation
can be taken as greater classifier evidence for that class) for the selected
location as a measure of the strength of classifier evidence for each of the
three possible locations.

Distinguishing between possible mechanisms underlying enhanced
population response
To explore whether observed increases in population response were con-
sistent with relative gain modulation, we used a simulation to compare
the expected influence on the spatiotopic population response under two
plausible mechanisms, multiplicative gain (Reynolds and Heeger, 2009;
Herrmann et al., 2010) and pRF shifts (Vo et al., 2017), with our
observed population-level modulations. Each voxel’s activity was simu-
lated by the cumulative distribution function

Activity ¼ N r �mð Þ ¼
ðr�m

�1

1

s
ffiffiffiffiffiffiffi
2p

p e
� x2

2s2dx;

where r denotes the radius of the selected Gabor stimulus, m denotes
voxel’s estimated pRF center, and s denotes voxel’s estimated pRF size
(given by the SD of the best-fit Gaussian; Fig. 4A). In the multiplicative
gain model (Fig. 4B, left), selection-related modulation, m, of activity for
voxels with pRF centers within the selected Gabor was given by

A B

Figure 2. Temporal evolution of selection and memory decoding. A, Simulating selection and memory-related activity and predicting the performance of decoding target
location and orientation. The neural activities for selection and memory were simulated by convolving the hypothetical duration with an HRF. The performance prediction
was proportional to the amplitude of neural activities in arbitrary units. B, The time series of decoding performance for target location and orientation. The gray dashed lines
key the chance for decoding location (33.3%) and orientation (16.7%). Blue and red lines stand for decoding location in pre-cue and retro-cue conditions, respectively.
Yellow and green lines stand for decoding orientation in pre-cue and retro-cue conditions, respectively. The colored lines depict the mean of the performance for all subjects.
The filled area around the line keys the 95% bootstrap CI. The dots on the top and bottom indicate the performance at the corresponding time points is significantly higher
than chance (the darkest color means p, 0.001; the medium color means p, 0.01; the lightest color means p, 0.05; one-sided, FDR corrected across all time points for
each ROI and decoding condition independently).
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m ¼ 11 0:6
pðdÞ
pð0Þ ¼ 11 0:6e

�d2�3:52

2s2 ;

where d denotes the distance between voxel’s pRF center and the center
of the selected Gabor and s denotes voxel’s estimated pRF size; (cf.
Reynolds and Heeger, 2009; see their Fig. 1; Herrmann et al., 2010; see
their Fig. 5). In the pRF shift model (Fig. 4B, right), we assumed that
voxels’ pRF centers would shift a distance of s toward the center of the
selected location according to

s ¼ 0:2� 1� e�1:5dð Þ;

where d denotes the distance between voxel’s pRF center and the center
of the selected Gabor (cf. Vo et al., 2017; see their Fig. 2e). To assess
which model best described our data, we calculated the sum of squared
error between simulated and observed activity modulation.

Statistical analysis
For our behavioral analyses, we used paired-sample t tests to examine
differences between performance across tasks. For our fMRI analyses, all
statistics were calculated using a nonparametric permutation analysis
(Rademaker et al., 2019). This method is appropriate here because there

was no a priori reason to believe that the data would be normally distrib-
uted. Specifically, we repeated each analysis with shuffled trial labels (i.e.,
selected location: left, right, bottom) 1000 times to build an empirical
null distribution of the test statistic of interest (e.g., decoding accuracy).
For individual-level analyses, the percentage of the empirical null distri-
bution that was equal to or larger than the real data were taken as the p-
value. For group-level analyses, our test statistic was the t-value derived
from a paired t test of the real data (vs zero or chance), and the empirical
null distribution was the corresponding t value for each of the 1000 itera-
tions. The p-value was the percentage of the null distribution equal to or
larger than the true t score.

Data availability
Behavioral, eye-tracking, and MRI data, and analysis code are available
at https://osf.io/jqu95/.

Results
Behavioral performance
The accuracy of memory judgments in the pre-cue and retro-cue
tasks indicated that participants performed each task well (Fig.
1B). Each condition used a separate staircase with a target accu-
racy of 80%. As expected, we found no significant difference in
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Figure 3. Reconstructing the topographic patterns of selection. A, Procedure for reconstructing the pRF-weighted selection activity maps. For each condition and ROI, we multiplied the
GLM-obtained selection-related b coefficients for each voxel, for each location (i.e., left, right, down) separately, by its pRF model parameters (i.e., position, size) and summed across all voxels.
This procedure projects the relative population activity within the ROI in brain space into screen coordinates of visual space. B, The pRF-weighted reconstruction maps for each condition and
ROI. The circles in the map mark the three placeholder rings shown during the experiment, and the red ring keys the selected location. C, The mean of pRF-weighted selection-related activity
in the selected and nonselected locations in each task and ROI for individual subjects (gray) and across subjects (blue for pre-cue and red for retro-cue). These results indicate that changes in
population gain underlie attentional and WM selection. D, The relationship between the activity modulation observed in C and decoding results. Within-task (left) and across-task (right) decod-
ing strength in the form of classifier activation is shown separately for trials with low and high modulation. Error bars are the 95% bootstrap CI. Stars in the top indicate the significance of the
difference between the two conditions indicated in the x-axis (***p, 0.001, **p, 0.01, *p, 0.05; one-sided, FDR corrected across all ROIs for each task condition independently).
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accuracy between the pre-cue (81%) and retro-cue (78%) condi-
tions, t(10) = 2.084, p= 0.064, Cohen’s d=0.628, BF10= 1.421. At
threshold, the angular differences between the sample and probe
orientations in the pre-cue (13.64°) and retro-cue (15.76°) condi-
tions did not significantly differ, t(10) = 1.856, p= 0.093, Cohen’s
d= 0.560, BF10= 1.074, suggesting that performance was well-
matched across the two tasks.

Decoding target location from isolated selection-related
BOLD activity
First, we estimated selection-related activity on each trial using
a GLM that modeled each of the trial components for each cue-
ing condition (Materials and Methods). Second, for each con-
dition separately, we trained classifiers to predict the cued
locations (i.e., left, right, down; Fig. 1C). For both pre-cue and
retro-cue trials, most of the ROIs could successfully decode the
selected location (Fig. 1D), confirming that our decoding pro-
cedures were robust. Third, to test our main hypothesis regard-
ing a shared neural selection mechanism, we performed across-
condition decoding. We trained classifiers using pre-cue data
and attempted to decode the cued location using retro-cue data.
Similarly, we trained classifiers using retro-cue data and de-
coded the cued locations using pre-cue data. Critically, we
found that most of the ROIs could successfully decode the
selected location across cueing conditions (Fig. 1D). The per-
formance of across-condition decoding was ;90% of within-
condition decoding, suggesting that the neural activity patterns
were nearly interchangeable across the two tasks. We ruled out
that these results were because of gaze shifts during selection
(Theeuwes et al., 2005, 2009; Hedge and Leonards, 2013); classi-
fiers trained on eye position were unable to predict the selected
location (all FDR corrected ps� 0.05).

Temporal evolution of selection and memory
To confirm that our decoding results indeed represented selec-
tion as opposed to incidental maintenance of the selected loca-
tion, we examined the time course of decoding accuracy. This
analysis was motivated by the fact that location information
was essential during the selection process itself, but ceased to
be task-relevant once selection was complete (as the memory
probe was presented at fixation). Thus, we predicted that the
time course of decoding accuracy for location would rise fol-
lowing the onset of the selection cue and return to chance once
selection was complete, while the time course of orientation
decoding (signifying the maintenance, retrieval, and response
processes) would peak after selection and remain above chance
for the duration of the trial. To formalize this prediction, we
separately convolved the selection regressor and the combined
delay 1 response 1 feedback regressors from our GLM with
the HRF to simulate the expected time courses of the selection
and memory processes, respectively (Fig. 2A). We then com-
pared these simulated time courses with the actual decoding
time course for location and orientation. Critically, the decod-
ing time course analysis was completely independent from the
GLM used to derive the simulated time courses (see Materials
and Methods). The decoding accuracy time series for location
and orientation (Fig. 2B) closely matched our simulated time
courses. Specifically, the rapid rise and fall of location decoding
in visual and parietal cortex matched the simulated time course
of selection, whereas orientation decoding in visual cortex mir-
rored the simulated memory time course. Moreover, location
decoding accuracy peaked earlier in the pre-cue relative to the
retro-cue condition, consistent with the relative timing of selec-
tion in the two tasks. Together, these observations support our
claim that location decoding reflected the selection process
while orientation decoding reflected memory processes.
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Figure 4. Simulating multiplicative gain and pRF shift mechanisms. A, Schematic illustrating the simulation of selection-related activity. B, Schematic illustrating the simulation of the two
possible mechanisms. In the multiplicative gain model, activity enhancement was modulated by multiplying the selection-related activity of voxels with pRF centers in the selected location. In
the pRF shift model, voxels’ pRF centers were shifted toward the center of the selected location. C, The simulated activity modulation maps for the two possible mechanisms. We reconstructed
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Reconstructing maps of selection-related activity
Although these results derived from machine learning approaches
provide strong evidence for interchangeable patterns of activity
during attentional and WM selection, it is notoriously difficult to
make direct inferences about neural mechanisms based on signifi-
cant classification (Freeman et al., 2011; Naselaris et al., 2011;
Serences and Saproo, 2012). We used each voxel’s pRF parameters
(i.e., position and size) to project selection-related activity within
each ROI to the screen coordinates of visual space (Fig. 3A). We
used these reconstructions to visualize how selection impacted the
distribution of activity within the retinotopically organized maps.
Notably, we found increased activity in the portions of the maps
containing the selected target relative to the distractors for both
the pre-cue and retro-cue conditions (Fig. 3B). To quantify
these results, we compared the mean activity within the selected
and nonselected locations. For both pre-cue and retro-cue con-
ditions, the mean activity at the selected location was higher
in V1–V3, V3AB, and IPS0/1 (Fig. 3C). To investigate whether
this relative difference in activity explained the significant
cross-decoding between pre-cued and retro-cued selection, we
conducted a median split of trials for each subject based on the
magnitude of population modulation for the selected location
and compared classifier evidence (quantified as the classifier
activation for the selected location relative to the activation for
the nonselected locations) for low-modulation and high-modu-
lation trials. Both within-task and across-task classifier evidence
were significantly greater for high-modulation relative to low-
modulation trials in V1–V3, V3AB, and IPS0/1 (Fig. 3D). Such
relative difference in spatiotopic activity modulation explains
why we found significant cross-decoding between selection
during pre-cue and retro-cue tasks. Most provocatively, these
findings are highly consistent with the effects of multiplicative
gain enhancement that have been observed at the population
(Corbetta et al., 1990; Sprague and Serences, 2013) and single-
neuron (Connor et al., 1997; McAdams and Maunsell, 1999;
Treue and Martínez Trujillo, 1999) level; as such, our results
point to a plausible neural mechanism underlying a shared
mechanism of external and internal selection.

To provide further support for the notion that gain enhance-
ment is the mechanism underlying our observed changes in
population response, we used simulations to directly compare
two mechanisms of selection. We simulated fMRI data expected
under multiplicative gain (Fig. 4B, left) and under pRF shifts
(Fig. 4B, right) and compared these data to our observed data in
Figure 3C. Critically, while both multiplicative gain (Reynolds
and Heeger, 2009; Herrmann et al., 2010) and RF shifts (Vo et
al., 2017) have been observed with fMRI during spatial selection,
these mechanisms make different predictions about the spatial
pattern of modulation in voxels that represent the selected
location. Specifically, the gain model predicts that the largest
enhancement in response would occur in voxels whose RFs cover
the center of the selected location, while the RF shift model pre-
dicts a larger enhancement in voxels whose RFs cover the periph-
ery of the selected location (i.e., voxels whose RF centers shift
from outside the selected location to inside the selected location).
The simulated topographic patterns of activity shown in Figure
4C are consistent with the prediction of the multiplicative gain
mechanism. The sum of squared error between observed and
simulated activity enhancement modulation suggests that our
observed data were significantly more consistent with the multi-
plicative gain model in V1–V3, V3AB, and IPS1/0 (all FDR cor-
rected ps � 0.004), but not in IPS2/3 or PCS where the two
models did not significantly differ (all FDR corrected ps � 0.080;

Fig. 4D). These findings bolster the claim that gain modulation
supports a common selection operation.

Discussion
While both attention and WM involve the preferential process-
ing of task relevant information, here we addressed the extent
to which they draw on shared mechanisms. Importantly, the in-
tuitive and appealing notion that attentional and WM selection
reflect a single underlying process (Chun et al., 2011; Kiyonaga
and Egner, 2013) lacks direct evidence. Behavioral studies
using dual task paradigms report inconsistent effects of a concur-
rent attention-demanding task on WM selection (Janczyk
and Berryhill, 2014; Lin et al., 2021; but see Hollingworth
and Maxcey-Richard, 2013; Rerko et al., 2014; Makovski and
Pertzov, 2015). Furthermore, while neural studies consistently
observe that attentional andWM selection evoke activity in over-
lapping brain regions (Griffin and Nobre, 2003; Nobre et al.,
2004; Kuo et al., 2009; Gazzaley and Nobre, 2012), this is a quali-
tative and not a quantitative conclusion, and crucially ignores
the possibility that selection processes may draw on distinct neu-
ral mechanisms that coexist in the same brain regions. As an
illustrative example, perception of first-order and second-order
motion have been found to activate nearly identical regions in
V1 (Nishida et al., 2003), but a quantitative comparison demon-
strated that different populations were responsible for each
(Ashida et al., 2007). Our findings establish a stronger case for
the overlap of selection operations for perceptual and mnemonic
information than prior work by identifying interchangeable pat-
terns of activity in human visual, parietal, and to a lesser extent
frontal cortices during attentional and WM selection. An impor-
tant distinction between our work and existing MVPA studies
comparing attention, perception, and WM is that these other
studies have focused on overlap in perceptual and mnemonic
representations (Serences et al., 2009; Jerde et al., 2012), as
opposed to the operations that facilitate the use of these repre-
sentations to guide behavior. In addition, our results represent
an advance over previous studies that found task-generalized
decoding only in prefrontal cortex (Panichello and Buschman,
2021) or not at all (Tamber-Rosenau et al., 2011) by providing
evidence for a generalized selection mechanism that spans
multiple cortical regions. An important area for future studies
will be to identify the specific contexts that engage this shared
mechanism.

Another key theoretical advance of our work lies in identi-
fying a putative mechanism, activity enhancement of spatio-
topic population-level responses in the selected location (i.e.,
gain enhancement), that underlies selection in attention and
WM. Enhanced sensory responses during attentional selection
is a well-established finding at the population level (Corbetta
et al., 1990; Mangun et al., 1993; Sprague and Serences, 2013),
most likely because of a multiplicative scaling of neuronal
responses within the attended receptive field (Connor et al.,
1997; McAdams and Maunsell, 1999; Treue and Martínez
Trujillo, 1999; Williford and Maunsell, 2006) that drives
preferential processing of perceptual information. In con-
trast, there is comparatively little evidence for the role of
gain enhancement in WM selection besides qualitative sim-
ilarities between WM-induced modulations of visual proc-
essing and the enhancement of sensory processing during
attentional selection (Awh et al., 2000; Sreenivasan and Jha,
2007; Sreenivasan et al., 2007; Merrikhi et al., 2017). Our
findings suggest that the vast literature on multiplicative
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gain can be leveraged to better understand how we select in-
formation from within WM. According to theory, increases
in neural gain enhance the signal-to-noise ratio, and there-
fore precision, of neural representations (Zemel et al., 1998;
Ma et al., 2006). Thus, the gain increases we observed asso-
ciated with selection might control which items are priori-
tized in WM. Notably, while gain enhancement is the most
plausible mechanism based on our simulation results (Fig. 4),
we do not claim to have conclusively ruled out all mechanisms of
selection. Importantly, our results constrain theory by demon-
strating that any plausible mechanism would need to produce
equivalent relative activity modulation at the populational level.

Do our decoding results reflect the selection process itself or
the outcome of the selection process (i.e., the consequence of
having selected a particular location; Myers et al., 2017)? We
considered this question in two ways – first by examining the
time course of location decoding to distinguish between selection
and memory for the selected information. We found that the
strongest decoding of location was time-locked to the selection
events in both tasks, with decoding accuracy quickly falling to
chance once the location information was no longer relevant.
In contrast, orientation decoding peaked later after selection
and remained above chance for the entire memory delay. This
pattern of findings indicates a transient process by which the
task-relevant location was selected followed by prolonged
maintenance of the target’s orientation. Thus, location decod-
ing in our data likely represents the selection process itself.
The time-limited representation of selection that we observed
may help explain important discrepancies in the behavioral
literature – some studies find dual-task costs between attention
and selection in WM (Janczyk and Berryhill, 2014; Lin et al.,
2021) and others do not (Hollingworth and Maxcey-Richard,
2013; Rerko et al., 2014; Makovski and Pertzov, 2015). We argue
that studies that have failed to observe interference generally
assume that attention is continuously applied to maintain selec-
tion in WM (Hollingworth and Maxcey-Richard, 2013), while
those that find interference generally put the secondary task tem-
porally near the selection cue (Janczyk and Berryhill, 2014).
Further elucidation of the temporal profiles of selection in WM
should be an important area for future investigation.

Second, despite the fact that our study was not specifically
designed to distinguish the sources controlling selection from
the effects of selection, our findings intriguingly point to poten-
tially distinct roles of visual and association cortex. In visual cor-
tex, not only could we decode the selected location, but in later
time points we could decode the target orientation held in mem-
ory, suggesting a role in WM storage (Curtis and D’Esposito,
2003; Serences et al., 2009; Sreenivasan et al., 2014), potentially as
a consequence of receiving top-down selection signals (Sprague et
al., 2016; Rahmati et al., 2018; Yoo et al., 2022). On the other
hand, in parietal and frontal cortex, we had robust decoding of
selected location, while decoding of memorized orientation was
inconsistent across the delay and across ROIs (Fig. 2B), consistent
with the idea that gain enhancement in topographically organized
regions of parietal and frontal cortex reflects the sources of top-
down signals controlling which locations are selected. While we
cannot completely rule out the possibility that unsuccessful orien-
tation decoding was because of larger RF sizes or increased spatial
heterogeneity in the representation of features in these regions
(for a successful demonstration of orientation decoding in fronto-
parietal cortices, see Ester et al., 2015), our findings are reminis-
cent of the role of frontoparietal cortex in orienting attention and
prioritization (Corbetta and Shulman, 2002; Serences and Yantis,

2006; Jerde et al., 2012) and gating (Frank et al., 2001; Chatham et
al., 2014), and spatial cognition more broadly (Heilman et al.,
1985; Mesulam, 1999; Corbetta et al., 2000; Vandenberghe et al.,
2001; Yantis et al., 2002; Srimal and Curtis, 2008; Szczepanski et
al., 2010; Mackey et al., 2016). It is worth noting that a previous
study that failed to find a common multivoxel pattern across
attentional and WM selection used different features (location
and object) for selection across tasks (Tamber-Rosenau et al.,
2011). Given that neural substrates of selection are sensitive to
differences in the medium of selection (Giesbrecht et al., 2003),
conclusions about a common selection mechanism ought to be
drawn from comparisons which rigorously match the attention
and WM tasks. Here, we compare across the same selection me-
dium (location), equating relevant features, as well as behavioral
performance. Consistent with the idea that WM selection relies
on internally-directed shifts of attention that highlight task-rele-
vant information, our results suggest that a common mechanism
underlies selection during attention andWM.
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