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Abstract

Perception, working memory, and long-term memory each evoke neural responses in visual
cortex, suggesting that memory uses encoding mechanisms shared with perception. While
previous research has largely focused on how perception and memory are similar, we
hypothesized that responses in visual cortex would differ depending on the origins of the inputs.
Using fMRI, we quantified spatial tuning in visual cortex while participants (both sexes) viewed,
maintained in working memory, or retrieved from long-term memory a peripheral target. In each
of these conditions, BOLD responses were spatially tuned and were aligned with the target’s
polar angle in all measured visual field maps including V1. As expected given the increasing
sizes of receptive fields, polar angle tuning during perception increased in width systematically
up the visual hierarchy from V1 to V2, V3, hV4, and beyond. In stark contrast, the widths of
tuned responses were broad across the visual hierarchy during working memory and long-term
memory, matched to the widths in perception in later visual field maps but much broader in V1.
This pattern is consistent with the idea that mnemonic responses in V1 stem from top-down
sources. Moreover, these tuned responses when biased (clockwise or counterclockwise of target)
predicted matched biases in memory, suggesting that the readout of maintained and reinstated
mnemonic responses influences memory guided behavior. We conclude that feedback constrains
spatial tuning during memory, where earlier visual maps inherit broader tuning from later maps
thereby impacting the precision of memory.

Significance Statement

We demonstrate that visual information that is seen, maintained in working memory, and
retrieved from long-term memory evokes responses that differ in spatial extent within visual
cortex. These differences depend on the origins of the visual inputs. Feedforward visual inputs
during perception evoke tuned responses in early visual areas that increase in size up the visual
hierarchy. Feedback inputs associated with memory originate from later visual areas with larger
receptive fields resulting in uniformly wide spatial tuning even in primary visual cortex. That
trial-to-trial difficulty is reflected in the accuracy and precision of these representations suggests
that visual cortex is flexibly used for processing visuospatial information, regardless of where
that information originates.
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Introduction

While it is clearly established that occipital cortex contains visual maps (Inouye, 1909), recent

evidence supports the provocative idea that these visual maps also play important roles in both

working and long-term memory. Surprisingly, the contents of visual working memory (Harrison

and Tong, 2009; Serences et al., 2009; Curtis and Sprague, 2021) and the contents retrieved from

long-term memory (Bosch et al., 2014; Naselaris et al., 2015; Vo et al., 2022) can be decoded

from the patterns of voxel activity in human primary visual cortex (V1). Such results provide

strong support for influential theories of how the encoding mechanisms used for perception

might also be used to store working memory representations (D’Esposito and Postle, 2015;

Serences, 2016) and similarly be used to recall the visual properties of retrieved long-term

memory (Tulving and Thomson, 1973; Schacter et al., 1998; Rugg et al., 2008). Thus, it is no

longer a question as to whether visual cortex participates in cognitive functions beyond

perception, but a question of how.

Patterns of evoked activity during perception can be used to predict the contents of memory

(Albers et al., 2013; Bosch et al., 2014; Rademaker et al., 2019), supporting the idea that they

share encoding mechanisms in visual cortex. Moreover, recalling large objects evokes activity

that encroaches into more peripheral portions of visual field maps (Kosslyn et al., 1995), as if

recalled objects that are larger encompass more of the visual field just like it does for seen

objects. Despite these seeming parallels, we hypothesized that these responses in striate and

extrastriate cortex also differ because the origins of their inputs differ. During perception, visual

information is transmitted through the eyes and the retinogeniculate pathway to a cluster of

retinotopically organized maps, including V1, V2, and V3 (Van Essen and Maunsell, 1983).

Neural activity in these early visual maps strongly influences one’s percepts (Tong et al., 1998).

During working memory, information enters visual cortex in the same feedforward way, but after

stimulus offset the maintenance of visual information depends on interactions between higher

order cortical regions like the prefrontal cortex and sensory areas like V1. Such interactions

support the storage of working memory representations (Curtis and D’Esposito, 2003;

D’Esposito and Postle, 2015; Curtis and Sprague, 2021). During long-term memory, information

is thought to be reconstructed in visual cortex through the retrieval of a memory stored in other

brain structures such as the hippocampus (Schacter et al., 1998).

2

https://paperpile.com/c/SRhW1b/FnJl
https://paperpile.com/c/SRhW1b/oBVc+908a+GpBB
https://paperpile.com/c/SRhW1b/oBVc+908a+GpBB
https://paperpile.com/c/SRhW1b/8yyN+JDsa+tpCt
https://paperpile.com/c/SRhW1b/vEzP+mcUh
https://paperpile.com/c/SRhW1b/vEzP+mcUh
https://paperpile.com/c/SRhW1b/jiRu+V8L6+b5Ed
https://paperpile.com/c/SRhW1b/AEid+8yyN+b5Rk
https://paperpile.com/c/SRhW1b/ZXaz
https://paperpile.com/c/SRhW1b/Nblu
https://paperpile.com/c/SRhW1b/rpEX
https://paperpile.com/c/SRhW1b/ZI92+mcUh+GpBB
https://paperpile.com/c/SRhW1b/ZI92+mcUh+GpBB
https://paperpile.com/c/SRhW1b/b5Ed


Most of the research described above focused on similarities between memory and perceptual

representations. Some recent work, however, has also observed systematic differences between

visual cortex activations between perception and long-term memory (Breedlove et al., 2020;

Favila et al., 2022), and between perception and working memory (Rademaker et al., 2019;

Kwak and Curtis, 2022). But several important questions remain. There have been no

comparisons of visual cortex responses in perception, working memory, and long-term memory

with the same study parameters, limited links between the precision of long-term memory

reactivation and single-trial behavior, and no comparisons of the temporal dynamics between

working memory and long-term memory signals in visual cortex.

Here, we use the receptive field properties of neuron populations within voxels (Dumoulin and

Wandell, 2008) in visual field maps to quantify and compare the spatial tuning of evoked

responses during perception and memory. As a preview, fMRI responses during perception

matched the spatial position of seen targets and increased in tuning width up the visual hierarchy

consistent with increases in receptive field sizes (Smith et al., 2001; Dumoulin and Wandell,

2008). During working and long-term memory, tuning widths were large in early visual cortex as

if they were inherited from feedback from higher order areas with large receptive fields.

Critically, errors in these spatially tuned responses during visual memory aligned with errors in

memory behavior, suggesting that memory behavior depends on a readout of these maintained

and retrieved memory responses in early visual cortex.
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Materials and Methods

Subjects

Eight human subjects (5 Males, 25-32 years old) were recruited to participate in the experiment

and were compensated for their time. Subjects were recruited from the New York University

community and included author R.F.W. Other subjects were naive to the purpose of the

experiments. All subjects gave written informed consent to procedures approved by the New

York University Institutional Review Board prior to participation. All subjects had normal or

corrected-to-normal visual acuity, normal color vision, and no MRI contraindications. No

subjects were excluded from the main data analyses.

Stimuli

Target stimuli

For each of the three conditions (perception, working memory, long-term memory), 16

polar angles were selected from 16 evenly spaced bins along an isoeccentric ring at 7°

eccentricity from a central fixation point (0-22.5 deg, 22.5-45 deg, … 337.5 to 360 deg). Within

each bin, the precise target location was randomly assigned. The 48 target locations were

uniquely generated for each participant. The target stimulus at each spatial location consisted of a

drifting Gabor patch (sd = 0.33 deg, spatial frequency: 2 cyc/deg, truncated at 5 sd). Each Gabor

patch drifted radially towards fixation at a rate of 3 Hz (1.5 deg/s), with an orientation tangential

to the isoeccentric ring.

Object stimuli

A small image of an object (1° diameter) was shown at fixation at the beginning of each

trial. For the long-term memory condition, these pairings stayed consistent throughout the

pre-scan behavioral training (see below) and during the main experiment, and therefore a

particular object served as a cue for the location to retrieve from long-term memory. For

perception and working memory, the pairings were unique for each trial, ensuring that subjects

could not form associations between objects and target locations. The paired stimuli were

selected randomly without replacement from a bank of colored images consisting of everyday

objects (BOSS dataset, (Brodeur et al., 2010).
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Experimental procedure

Main experiment

The main experiment cycled through three scans: one each for perception, working memory, and

long-term memory, repeated twice per scan session (Figure 1). Each subject participated in two

scan sessions spaced no more than a week apart, for a total of 12 scans (4 per condition). Each

scan had 16 trials corresponding to the 16 target locations, in random order. Across both

sessions, this culminated in a total of 64 trials per condition, 192 trials total per subject.

For perception trials, we instructed participants to fixate on a central cross. The cross was

briefly replaced by an object for 0.5 seconds. After the object disappeared, the cross re-appeared

and the target stimulus remained visible for 11.5 seconds, during which subjects maintained

central fixation. After this delay period, the fixation cross changed from black to green,

indicating to the subject to make a saccade to the target location. Participants were instructed to

maintain their fixation at the expected location until the fixation cross changed color back to

black, at which point they returned their gaze to the central fixation cross. This saccade response

period lasted 1.5 seconds for each trial.

The working memory block was the same except the target stimulus disappeared when

the object disappeared. The subject was instructed to “hold the target in mind” throughout the

delay while centrally fixating. At the end of the delay, the subject was similarly cued to make a

saccade response to the location of the target stimulus.

The long-term memory block was the same except that the target stimulus was not shown

at all. The subject was instructed to retrieve from memory the target stimulus associated with the

object, with these associations learned during a pre-scan behavioral training session (see next

section). Similar to the working memory and perception blocks, participants maintained central

fixation during the delay period of 11.5 seconds and made a saccade to the target location when

the cross turned green.
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Figure 1. Main fMRI task design.

Subjects participated in two fMRI sessions with 6 scans each: perception, working memory, and
long-term-memory scans, repeated twice (top). Each 292-s scan included 16 trials corresponding
to 16 polar angles, in random order, always at 7° eccentricity. Objects are shown centrally for 0.5
seconds, but are only meaningful for the long-term memory trials. In Perception trials, the target
remains on screen for the 11.5-s delay. For working memory trials, the target disappears after 0.5
s. For long-term memory trials, the target is not shown. At the end of the delay, the fixation cross
turns green and participants make a saccade to the target location. The conditions are matched
except for how the target location is accessed and how it is maintained throughout the delay
period.

long-term memory training.

Subjects learned associations between 16 object stimuli and 16 target locations by

completing study and retrieval blocks before each scan session (outside the scanner). Following

each study block, subjects completed three retrieval blocks. In each trial of the study block, an

object stimulus was briefly presented at fixation simultaneously with its corresponding Gabor

target stimulus (Figure 2a). Subjects were instructed to fixate a central cross and learn the

association between each object stimulus and its corresponding target location. The study block
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was self-paced with a minimum 1 second inter-trial interval (ITI). Each of the 16 object/target

pairs was presented five times per block (80 trials), with at least two study blocks per behavioral

training session.

Figure 2. Prescan long-term memory training.

A) Study phase: Self-paced brief (0.5 second) viewings of the paired pre-cue at fixation and the
associated target Gabor in the periphery, followed by an inter-trial interval (min. one second)
Each participant had their own set of 16 unique pairs to memorize. B) Retrieval phase: The bulk
of learning happened during this training phase. The retrieval phase was similarly self-paced,
where following an inter-trial interval (min. one second), a paired cue was briefly presented at
fixation without the target in the periphery. After a brief delay period the participant was cued to
make a saccade response to the target’s location. Feedback was then given in the form of the
fixation cross either remaining green if the saccade was closest to the target’s location, or
changing to red if the response landed closer to a different target’s location. C) Example layout
of target stimuli: For each condition, target stimuli are presented at 7° eccentricity, sampled
around the visual field within each of 16 non-overlapping 22.5° bins. Every participant had their
own unique set of target locations. This led to some targets spaced near each other (i.e. near the
bin borders marked by the dashed lines), while others were spaced far apart.

In the retrieval block, subjects were instructed to fixate the central cross while the object

stimulus was flashed briefly, followed by a short delay where the subject was instructed to
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retrieve from memory the associated target stimulus (Figure 2b). This was followed by the

fixation cross changing color to green, which indicated to the participant to make an eye

movement to the target’s expected location. Feedback followed each retrieval trial in the form of

the fixation cross remaining green if correct or changing color to red if incorrect. A saccade was

considered correct if it was closer to the correct target than to any of the other 15 possible targets,

otherwise it was considered incorrect. Simultaneously, the target stimulus was revealed at its true

location, with the subject instructed to make a corrective saccade to the target stimulus. The

retrieval block was also self-paced with a 1 second minimum ITI. Each of the 16 object/target

pairs was presented four times per block (64 trials), with at least six retrieval blocks for the first

training session, and four for the second session. Subjects were asked after six blocks if they felt

they learned all the associations or if they needed to do more practice. If they needed more

practice, they did at least one more retrieval block.

Retinotopic mapping procedure

In addition to the main experiment each participant completed 10-12 retinotopic mapping

scans in a single separate scan session. The stimuli and procedures are the same used by

Himmelberg et al. (2021), described here in brief. Each scan consisted of contrast patterns

windowed by bar apertures (1.5 deg width) that swept across the visual field within a

12-deg-radius circle. There were 8 sweeps along different directions. While vertical and

horizontal sweeps traveled the entire extent of the circular aperture, the diagonal sweeps stopped

halfway, and were then replaced by blank periods. Each bar sweep took 24 s to complete. At 8

sweeps for each functional run, each scan took 192 s in total to complete. The contrast patterns

were pink noise (grayscale) background with randomly placed and sized items. The stimuli and

background were updated at 3 Hz. Participants were instructed to report any observed change in

fixation dot color with a button box press. Color changes occurred around once every three

seconds. The contrast patterns for the mapping stimuli were first used by Benson et al (2018).

MRI acquisition

Imaging was conducted at the Center for Brain Imaging at New York University using a 3T

Siemens Prisma MRI system and a Siemens 64-channel head/neck coil. We acquired functional

images with a T2*-weighted multiband echo planar imaging (EPI) sequence with whole-brain

coverage (repetition time = 1 s, echo time = 37 ms, flip angle = 68º, 66 slices, 2 x 2 x 2 mm

voxels, multiband acceleration factor = 6, phase-encoding = posterior-anterior). We collected
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spin echo imageswith anterior-posterior and posterior-anterior phase-encoding to estimate, and

correct for, the susceptibility-induced distortion in the functional EPIs. We also acquired one to

three whole-brain T1-weighted MPRAGE 3D anatomical volumes (.8 x .8 x .8 mm voxels) for

each of the eight subjects.

MRI processing

All original MRI data (DICOM files) were defaced to anonymize them using pydeface

(https://github.com/poldracklab/pydeface). The DICOM data were then converted to NIFTI and

organized into the Brain Imaging Data Structure format (Gorgolewski et al., 2016) using

Heuristic Dicom Converter (Halchenko et al., 2018). The data were then preprocessed using

fMRIPrep 20.2.7 (Esteban et al., 2018, 2019), which is based on Nipype 1.7.0 (Gorgolewski et

al., 2011, 2018).

Anatomical data preprocessing.

The following sections on anatomical and functional data preprocessing are provided by the

fMRIPrep boilerplate text generated by the preprocessed scan output.

Each of the one to three T1w images was corrected for intensity non-uniformity with

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008).

The T1w-reference was then skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain

tissue segmentation of cerebrospinal fluid, white-matter and gray-matter was performed on the

brain-extracted T1w using fast (FSL 5.0.9, (Zhang et al., 2001)). A T1w-reference map was

computed after registration of the T1w images (after intensity non-uniformity-correction) using

mri_robust_template (FreeSurfer 6.0.1, (Reuter et al., 2010)). Brain surfaces were reconstructed

using recon-all (FreeSurfer 6.0.1, (Dale et al., 1999)), and the brain mask estimated previously

was refined with a custom variation of the method to reconcile ANTs-derived and

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein, 2017).

Functional data preprocessing.

For each of the 12 BOLD runs found per subject (across all tasks and sessions), the following

preprocessing was performed. First, a reference volume and its skull-stripped version were

generated by aligning and averaging a single-band reference. A B0-nonuniformity map (or

fieldmap) was estimated based on two EPI references with opposing phase-encoding directions,

with 3dQwarp (Cox and Hyde, 1997). Based on the estimated susceptibility distortion, a
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corrected EPI reference was calculated for a more accurate co-registration with the anatomical

reference. The BOLD reference was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration (Greve and Fischl, 2009).

Co-registration was configured with six degrees of freedom. Head-motion parameters with

respect to the BOLD reference (transformation matrices, and six corresponding rotation and

translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL

5.0.9, (Jenkinson et al., 2002)). BOLD runs were slice-time corrected to 0.445s (0.5 of slice

acquisition range 0s-0.89s) using 3dTshift from AFNI 20160207 (Cox and Hyde, 1997). First, a

reference volume and its skull-stripped version were generated using a custom methodology of

fMRIPrep. The BOLD time-series were resampled onto the fsnative surface. The BOLD

time-series (including slice-timing correction) were resampled onto their original, native space

by applying a single, composite transform to correct for head-motion and susceptibility

distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD. All

resamplings can be performed with a single interpolation step by composing all the pertinent

transformations (i.e. head-motion transform matrices, susceptibility distortion correction, and

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to

minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface)

resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly within

the functional processing workflow. For more details of the pipeline, see the section

corresponding to workflows in fMRIPrep’s documentation.

GLM analyses. From each subject’s surface based time series, we used GLMSingle (Prince et

al., 2022) to estimate the neural pattern of activity evoked during the 11.5-s delay periods of the

main experiment for each trial. GLMSingle is a three step process where 1) an optimal

hemodynamic response function (HRF) is fit to each vertex’s time series from a bank of 20 HRF

functions obtained from the Natural Scenes Dataset via an iterative linear fitting procedure. 2)

Noise regressors are computed from the data by identifying noisy vertices defined by negative

R2, deriving noise regressors from this noise pool using principal component analysis, then

iteratively removing each noise regressor from all vertices’ time series. The optimal number of

regressors is determined via a cross-validated R2 improvement for the task-model. 3) GLMSingle
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implements fractional ridge regression as a way to improve robustness of single-trial beta

estimates, particularly useful here as our design yields a limited number of trials per target

position within each condition.

We constructed our design matrices to have 48 regressors of interest (16 polar angle bins

x 3 conditions), with the events modeled as boxcars corresponding to the 11.5 s delay periods.

We estimated one model for each participant with these designs in GLMSingle, resulting in

single trial estimates for each trial in each surface vertex.

Fitting pRF models

Using the data from the retinotopy session, we fit population receptive field (pRF) models for

each vertex on the cortical surface, as described by Himmelberg et al. (2021; section 2.6). In

brief, for each surface vertex we fit a circular 2D-Gaussian linear population receptive field

(pRF) to the BOLD time series, averaged across identical runs of the bar stimulus. The software

was implemented in Vistasoft as described in Dumoulin & Wandell (2008), with a wrapper

function to handle surface data (https://github.com/WinawerLab/prfVista). The models are

parameterized by the Gaussian center (x, y) and standard deviation (𝜎).

Visual field map definitions

Visual field maps were defined by drawing boundaries at polar angle reversals on each subject’s

cortical surface using an early version of the visualization tool, cortex-annotate

(https://github.com/noahbenson/cortex-annotate), which is built on neuropythy software

(https://github.com/noahbenson/neuropythy, (Benson and Winawer, 2018). We followed

common heuristics to define seven maps spanning early to mid-level visual cortex: V1, V2, V3

(Himmelberg et al., 2021; Benson et al., 2022); hV4 (Winawer and Witthoft, 2015); V3A and

V3B (grouped into one ROI, V3ab) and IPS0 (Mackey et al., 2017); and LO1 (Larsson and

Heeger, 2006).

We defined experiment-specific regions of interest for each visual field map composed of

vertices whose pRF centers were near the target eccentricity and whose variance explained by

the pRF model was above 10%. Specifically, we included only those vertices whose pRF centers

were within one 𝜎 of 7° (the target eccentricity in the experiments). For example, a vertex with

pRF center at 6 deg and pRF size (𝜎) of 1.5 deg would be included, but a vertex with pRF center

at 6 deg and pRF size of 0.5 deg would not be included. We imposed the eccentricity restriction
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for the purpose of examining polar angle activation profiles, described in the next section. These

measures are based on the retinotopy scans only and are therefore independent of the main

experiment.

Analyses quantifying perception, working memory, and long-term memory activity

To examine the evoked BOLD response within the 11.5 second delay, we constructed polar-angle

activation profiles for each visual field map and each condition (perception, working memory,

long-term memory). Some analyses averaged over the delay period. For these analyses, we

obtained the response amplitudes from GLMsingle (one beta weight per trial for each surface

vertex). The visual field coordinates for each vertex came from pRF mapping. We binned the

response amplitudes by the polar angle distance between each vertex’s pRF and the target

location on that trial. Binning by polar angle distance from the target enabled us to average

across trials with different target locations, resulting in an activation profile as a function of

distance from the target. This results in a distinct polar angle activation profile for each subject,

condition, and visual field map. Prior to averaging across subjects, we normalized each

activation profile by dividing by its vector length. To preserve meaningful units, we then rescaled

the activation profile by the average of vector lengths across subjects. Visual inspection of the

average profiles showed a peak near 0, and negative responses far from 0. We fit the functions

with a difference of two von Mises distributions, constrained so that the centers were the same.

A separate procedure was used to derive 2D activation profiles, which include time as

well as polar angle. To derive these, we extracted the preprocessed BOLD time series for each

vertex on each trial, rather than a single beta weight per trial, expressed as percent signal change

from the mean of each scan. Time was sampled at second from 0 s to 14 s in each trial, relative to

the start of the delay period. We then computed polar angle activation profiles independently for

each time point, using the procedure described above: binning by polar angle distance from the

target, averaging across trials within a condition and visual field map, normalizing by the vector

length, averaging across subjects, and then re-scaling by the average vector length. This results

in 2D activation profiles, which span polar angle and time within a trial.

For temporal analyses these 1D polar angle activation profiles were computed at each

timepoint (TR = 1 sec) from the onset of the paired cue to 14 seconds after, resulting in a 2D

heatmap of the polar angle activation profiles over time. As in the static activation profiles, the

vertices were binned by polar angle distance from the target, and averaged across trials within
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each visual map, separately for each condition and subject. This results in a matrix that is polar

angle by time. We fit the polar angle profile independently for each time point, again using a

difference of Von Mises’ distributions, constrained so that the centers were the same.

For both analyses, we estimated the amplitude (trough to peak), the peak location, and

full-width-at-half-maximum (FWHM) from each of the difference of Von Mises fits. We

bootstrapped across subjects (with replacement) 500 times to obtain 68% and 95% confidence

intervals for these location, amplitude, and FWHM parameter estimates.

Temporal analyses

We characterized the time course for each 2D polar angle activation profile by fitting

logistic functions to the amplitude estimate at each time point. The logistic fits resulted in

estimates of four parameters for each 2D polar angle activation profile: t0 , the rise-time to reach

the function’s midpoint; L, the upper asymptote of the amplitude estimates; k, the logistic growth

rate of the function (i.e. the steepness of the curve); and c a baseline. All four parameters were

constrained to have a lower bound of 0; the upper bound was unconstrained for L and c, 15

seconds for t0, and 5% signal change / second for k. This fit was sufficient for the perception and

long-term memory conditions, which generally showed a rise and then a steady response. For

working memory, the response rose transiently, and then declined to a lower value. This pattern

was accurately captured by fitting a multiplication of two logistic functions rather than a single

logistic function. The two functions were constrained to have the same L parameter, but could

differ in t0, c, and k. The parameter bounds for the second logistic function were the same as the

first, except where k was constrained to be negative instead of positive. We repeated these

logistic fits for each of the bootstraps, computing 68% confidence intervals of the estimated

logistic time series.

Saccade analyses

We used 2 EyeLink eye trackers (SR Research, Ottawa, ON, Canada) with a 1000-Hz

sampling rate, one in the scanner and one outside the scanner. In the scanner the EyeLink 1000

plus was mounted onto a rig in the magnet bore that holds the projection screen. In the

psychophysics room for long-term memory training, we used an EyeLink Tower mount with a

25-mm lens mounted on the EyeLink camera to allow close viewing.

During both the training and the fMRI experiment, saccades were labeled by the

EyeLink’s default saccade detector, which classifies saccades as eye movements with velocity
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and acceleration exceeding 30 deg/s and 8000 deg/s2, respectively. Saccade responses were

collected during the response window at the end of each trial. For all behavioral analyses, the

saccade responses used are those which landed nearest the target eccentricity during the saccade

response window.

Subjects often make multiple saccades to get to the target. We defined the endpoint as the

saccade whose eccentricity was closest to the target eccentricity (7º), irrespective of the polar

angle. We then measured the angular distance between this point and the target (ignoring

eccentricity). We excluded saccade responses whose eccentricity was less than 3.5° or greater

than 12° visual angle from fixation. One subject was removed from the saccade analysis due to

technical error with the eye tracker during the scan sessions. Data from three scans from another

subject were also excluded due to calibration error.

For comparison between BOLD data and saccades, we divided the saccade data for each

subject and each condition into tertiles for counterclockwise, center, and clockwise. We repeated

the ROI-level analyses on this split saccade data to obtain 1D polar angle activation profiles for

each ROI, condition, subject, and tertile.

Resampling Statistics

We used the bootstrapped data from each analyses to make inferences on spatial tuning

properties as a function of condition and of other trial-level factors. Statistics reported are

computed using the bootstrapped data. To assess our main claims, we report the mean and

confidence intervals from the bootstrapped data. For comparisons between a measurement and a

fixed value, we report the 95% CI. For comparisons between two estimates, we report the 68%

CIs.

To assess the relationship between a map’s position in the visual hierarchy and spatial

tuning width, we assigned each map an ordinal value according to its relative position: 1, V1; 2,

V2; 3, V3; 4, hV4, LO1, V3A/B; 5, IPS0. We fit a line of tuning width vs ordinal position for

each bootstrap, generating a distribution of slope means for each condition. The rest of our

analyses took the form of computing the differences of mean effects between conditions, both for

individual visual maps and for early (V1-V3) vs. later (hV4-IPS0) visual cortex.
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Software

Data visualization, model fitting, and statistical quantification for all analyses described in this

paper were made using matplotlib 3.5.2 (Hunter, 2007), nibabel 3.2.2 (Brett et al., 2022), pandas

1.4.2 (The pandas development team, 2024), scikit-learn 1.0.2 (Pedregosa et al., 2011), scipy

1.8.0 (Virtanen et al., 2020), and seaborn 0.11.2 (Waskom, 2021).

Results

We tested how the spatial tuning of cortical visual representations is shaped by viewing a

peripheral target, maintaining it in working memory, or retrieving it from long-term memory. We

also tested how the cortical representations during memory relate to memory-guided saccades.

Working memory and long-term memory evoke spatially tuned responses in visual cortex

We first ask whether activation in early visual cortex during memory is spatially tuned. To

assess this, we parameterized the sensory representations generated during the delay period by

remapping GLM estimates of brain activity from the cortical surface to visual space (Figure 3,

left). We then computed polar angle activation profiles to capture the spatial tuning of sensory

representations generated during the delay period (Figure 3, right), and estimated their

amplitude, peak location, and tuning width. We compared these estimates between perception,

working memory, and long-term memory conditions.
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Figure 3. Target-aligned averages of sensory representations in visual space.

Single trial beta estimates for each vertex on the brain surface are obtained from the main task’s
delay period. In addition, a separate retinotopic mapping procedure is used to obtain population
receptive field (pRF) estimates for each vertex. We use the pRF estimates to remap the single
trial estimates on the brain surface to single trial estimates in visual space, that are then rotated
and aligned by trial target position. The pRF estimates are also used to define retinotopic maps
for seven regions of interest across visual cortex, and to restrict voxels to those with pRF centers
near the target eccentricity. Normalizing and averaging the aligned trial estimates for each map
yields target-aligned averages in visual space for each condition. A 2D visualization of a
subject’s target-aligned average is shown above for visual map V3. Beta estimates are binned by
polar angle distance from target and fit to a difference of Von Mises functions to produce polar
angle activation profiles. This mapping of evoked BOLD response as a function of polar angle
distance from the stimulus captures the spatial tuning profile of cortical responses during
perception, working memory, and long-term memory. Panels in this figure and all following
figures can be reproduced using code contained in the /paper/figures folder at
https://github.com/rfw256/Woodry_2024_Cortical-tuning-of-visual-memory/. The panels ‘Single
trial estimates’ and ‘target-aligned averages’ are generated using fig3_03-04-2024.py.

The clearest difference between perception and the two memory conditions is that the

BOLD amplitude is much larger during perception. This difference is particularly evident in

earlier visual maps V1-V4. While the amplitudes were lower during memory, they were all

positive, ranging from 0.25% to 0.5% percent signal change across visual maps (Figure 4B.

middle). The 95% confidence interval did not overlap 0% BOLD response in any ROI.
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The memory activation profiles, like the perception activation profiles, were spatially

tuned to the stimulus. Specifically, for all 3 conditions and all 7 visual field maps, peak location

estimates were centered around 0° relative to the stimulus angle (Figure 4B, left). Polar angle

activation profiles which peak at 0° indicate accurate tuning to the true target location. Tuning to

the target location is of course expected in the perception condition. But remarkably, we even see

tuning to the target location in the earliest visual map, V1, during both memory conditions. (The

confidence intervals from all three conditions include 0º.) Tuning in the two memory conditions

confirms prior work showing engagement of visual areas, including primary visual cortex, during

memory (Breedlove et al., 2020; Favila et al., 2022; Vo et al., 2022).

Figure 4. Memory has broader spatial tuning than perception in earlier visual cortex.

A) Polar angle activation profiles fit to brain activity during 11.5 second presentation/delay
period. Highlighted regions indicate 68% confidence intervals bootstrapped across subjects.
Perception working memory, and long-term memory brain activity show spatial tuning to target
locations across visual ROIs. B) Spatial tuning metrics obtained from polar angle activation
profiles across visual ROIs. The dots are means across bootstraps. The thick shading is the 68%
confidence interval. The thin shading is the 95% confidence interval. Dotted line in the leftmost
panel represents the target location (0°). The panels here are generated using
fig4_03-04-2024.py.

Memory shows broader spatial tuning than perception in early visual cortex

The lower amplitude but similar peak location during memory compared to perception suggests

that memory responses might be the same as perception except for a scale factor. This turns out

to not be correct. We find that instead of memory responses looking like perception responses
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(up to a scale factor), the memory responses show a difference in tuning width, which cannot be

achieved by simply increasing or decreasing the response amplitude.

During perception trials, tuning widths increased sharply from early to later visual maps.

To quantify this tendency, we assigned each map an ordinal value based on its estimated position

in the visual hierarchy: 1, V1; 2, V2; 3, V3; 4, hV4, LO1, V3A/B; 5, IPS0. We fit a line of tuning

width vs ordinal position, and find that for perception, the tuning width increases about 21º per

position in the hierarchy (slope = 20.9°, CI [17.9, 23.9]), consistent with what is known about

receptive fields increasing in size from early to later visual areas (Smith et al., 2001); (Dumoulin

and Wandell, 2008). In contrast, there was little increase in tuning width across visual maps

during both forms of memory, with a slope nearly half that measured during perception (working

memory: slope = 14°, CI [10.1, 16.9]; long-term memory: slope = 13.2°, CI [4.1, 18.7]). Because

the tuning widths were so similar for long-term memory and working memory, we compared the

average of the two memory conditions to perception. This steeper slope for perception than

memory was robust (diff = 7.3º, CI [3.9, 13.5]).

In early visual maps V1-V3, spatial tuning during memory was broader than during

perception (diff = 19°, CI [13.1, 28]), especially in V1 (diff = 30.7°, CI [14.2, 59.3]; Figure 4B,

right). In later maps – hV4, LO1, V3AB, and IPS0 – tuning widths were about the same in

perception, working memory, and long-term memory (diff = 2.8°, CI [-3.6, 8.3]). Therefore, the

memory responses are not just a scaled down version of the perceptual responses, but rather

show broader tuning in earlier maps.

Because the only differences between conditions are how visual information is accessed,

this confirms our hypothesis that differences in how information enters visual cortex shapes the

spatial tuning of the subsequent representations.

Distinct spatial tuning profiles emerge over time

The analysis above showed that the routing of stimulus information to visual cortex

–feedforward in perception vs top-down in memory– affects the spatial representation. Here we

ask how the routing affects the temporal dynamics of the response. Our expectation is that

long-term memory responses will be slowest because the responses must be generated entirely

internally (no stimulus is viewed). We can also ask whether working memory and long-term

memory signals show the same tendency to sustain over the delay. To compare the temporal

dynamics across conditions, we averaged the BOLD time series throughout the delay period
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across trials, binned by polar angle distance from the target (Figure 5a). We then computed the

peak amplitude at each time point, and fit a rising logistic function (perception and long-term

memory) or the product of a rising and falling logistic (working memory) across the time series

(Figure 5b). The logistic product captures both the transient response evoked by the target at the

beginning of the working memory delay period and the decay to a lower, sustained, activation for

the remainder of the delay period. Because we fit the working memory response using a different

function, we do not compare logistic parameters to the other two conditions. We make three

observations that distinguish perception from long-term memory from working memory.

First, the working memory responses show a clear transition from a stimulus-driven

transient, peaking at about 4 to 5 seconds after the cue, to a lower sustained signal. This is

expected because the target stimulus is briefly shown prior to the delay during working memory.

Second, we find a general tendency for slower rise-time in long-term memory than

perception across visual maps, with longer rise times in 6 of 7 maps, more prominent in V2 and

V4 (Figure 5c). This is consistent with memory responses arising later due to the sluggishness of

feedback. Moreover, the rise times are much more variable in memory, as expected from

responses that are internally and effortfully generated (memory) rather than from external,

stimulus-triggered responses (perception). Because of this variability, the rise-time is not

estimated precisely in long-term memory. Hence more data, either from more subjects or more

trials, would be needed to quantitatively test the claim.

Last, there is a slight tendency for the long-term memory and the working memory

responses to cross over toward the end of the trial, as working memory signals appear to decline

and long-term signals do not (Figure 5d). This pattern could arise from continued retrieval of the

stimulus throughout the long-term memory trials, and decreasing strength of the memory trace

during the working memory delay. Alternatively, the decrease during the working memory

delays could be a post-stimulus undershoot in the hemodynamic response. Experiments with

longer and variable delays are needed to disentangle these possibilities.
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Figure 5. Perception, working memory, and long-term memory have distinct tuning profiles over

time.

A) BOLD time course during the delays periods across visual cortex. Target location is plotted as
a dashed gray line at 0°. Full-width at half-maximum estimates are plotted as white lines above
and below the target location line, starting from 3 seconds after the onset of the delay.
Memory-based sensory representations vary in their tuning over time, whereas perceptually
evoked responses remain stable. B) Logistic functions fitted to amplitude estimates over time.
Highlighted regions represent the 68% confidence interval of the logistic fits, bootstrapped
across subjects. C) Comparison of rise-times to the inflection point of logistic fits between
perception (blue) and long-term memory (orange) across visual maps. Error bars represent 68%
confidence intervals bootstrapped across subjects. Long-term memory responses take longer to
rise than perceptually evoked responses. D) Zoomed in version of panel B showing the
comparison of response amplitudes near the end of the delay period between working memory
(green) and long-term memory (orange) across visual maps. Error bars represent 68% confidence
intervals bootstrapped across subjects. There is a crossover in working/long-term memory
amplitude estimates in the latter part of the delay period for most visual maps. The panels here
are generated using fig5_03-04-2024.py.
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Errors in cortical tuning aligned with errors in memory-guided behavior

The results above demonstrate that visual cortex is engaged in a retinotopically specific way

during working and long-term memory. These results do not, however, indicate whether these

retinotopic representations are relevant for behavior. This is an important and open question in

the field, with some reports claiming the representations are linked to behavior (Bone et al.,

2019, 2020; Hallenbeck et al., 2021; Li et al., 2021) and some questioning their relevance (Xu,

2017). If the visual cortex representations are relevant for behavior, we expect alignment

between the memory-driven cortical responses during the delay and subsequent saccade

responses. Here, we took advantage of trial variability to test whether the peak location of

cortical responses during the delay aligned with the direction of saccade error.

To test the alignment between cortical and saccade responses, we split the trials into three

groups by their saccade error (Figure 6b), those trials with saccades near the targets,

counterclockwise of the targets, or clockwise of the targets, with angular thresholds set to make

the three bins contain equals number of trials. We then repeated our spatial tuning analyses

separately for the clockwise and counterclockwise trials to compute the estimates of peak

location during the delay period (Figure 6c). To reduce the number of comparisons, we defined a

new region of interest as the union of all 7 maps. For this large ROI, there was a strong link

between neural tuning and saccade error in long-term memory: the peak estimates for trials with

clockwise saccades were 19.5º more clockwise than the trials with counterclockwise saccades

(diff = -19.5°, CI = [-34.2, -9.2]). In each of the separate maps, the same general pattern is found

in long-term memory. It is particularly pronounced in V3 (diff = -20.1°, CI [-29.9, -8.9]), V4

(diff = -25.9°, CI [-65.8, -1.5]), V3ab (diff = -14.7°, CI [-36.5, 2.7]), and IPS0 (diff = -39.4°, CI

[-62.4, 1.7]). In no map does the tuning go in the opposite direction of the saccades.

In contrast, for working memory, there was no systematic relationship between the peak

estimates of spatial tuning and saccade direction (diff = 1.7°, CI [-6.9, 11.6]). And there was at

best a small effect in perception (diff = -2.5°, CI [-6.0, 0.7]). This could be due to a restricted

range of saccade errors in perception, and to the possibility that when there are errors in working

memory, they develop gradually over the trial, as the representation drifts away from the viewed

target. Since the analysis of peak location pools across the whole delay, this would diminish the

impact of biases near the ends of the trials.
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The long-term memory results suggest that information reconstructed in visual maps is

likely used for memory-guided behavior.
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Figure 6. Saccade errors align with cortical tuning in long-term memory.

A) Saccade response spread in visual space. We aligned saccade responses to the target location
by subtracting their polar angle distance from target, and added 90° to align to the vertical axis.
Saccade responses during memory had greater error along polar angle than during perception,
consistent with the broader spatial tuning during memory within early visual maps. Standard
deviation of saccade errors in polar angle are shown in the bottom right. B) Histograms of
saccade error along polar angle. We grouped trials into tertiles: clockwise (black), center (gray),
or counterclockwise (white) to target polar angle location. The tertiles were defined for each
subject and conditions. C) Peak location estimates for clockwise/counterclockwise trial groups.
We fit polar angle activation profiles to the clockwise (black circles) and counterclockwise
(white circles) groups. Error bars represent the bootstrapped 68% confidence intervals. D) Peak
location estimates for clockwise/counterclockwise groups for each measured visual map. Error
bars represent 68% confidence intervals. The panels here are generated using
fig6_04-08-2024.py.
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Discussion

We measured the spatial tuning of cortical responses during perception, working memory, and

long-term memory. We find that both long-term and working memory scale the spatial tuning of

responses in early but not late visual field maps and that the temporal dynamics during the delay

differ across the three conditions. We further demonstrate the importance of memory-driven

visual cortex activations by showing that they correlate with behavior: trial-to-trial variation in

the spatial tuning of cortical responses during long-term memory is related to the accuracy of the

subsequent oculomotor responses.

Spatial tuning in visual cortex during long-term memory differs from perception

Long-term memory retrieval of information from hippocampus is reported to reinstate patterns of

cortical activity evoked during encoding (Wheeler et al., 2000; Rugg et al., 2008; Johnson et al.,

2009; Pearson et al., 2015). This ‘cortical reinstatement’ is supported by neurally-inspired

models of episodic memory (Damasio, 1989; McClelland et al., 1995; Rolls, 2000; Teyler and

Rudy, 2007). These theories do not imply that memory representations are identical to perceptual

representations. For example, it is widely found that memory responses are noisier than

perceptual responses. One possibility is that neural responses during memory reinstatement are

like those during perception, except for decreased signal-to-noise level (Wheeler et al., 2000;

Rugg et al., 2008; Johnson et al., 2009; Pearson et al., 2015).

We find partial support for such reinstatement. On the one hand, spatial tuning evoked by

long-term memory retrieval peaks at the expected locations in multiple visual field maps, as

early as V1. This supports the claim that the reinstatement of sensory information during

memory is stimulus specific. On the other hand, the long-term memory responses in earlier

visual maps (V1-V3) were more broadly tuned than perceptual responses, consistent with two

prior reports (Breedlove et al., 2020; Favila et al., 2022). The systematic difference in tuning

width between memory and perception demonstrates that memory driven-activity is not simply a

reinstatement of perceptual responses. A likely explanation lies in the architecture of visual

cortex: during feedback, earlier maps inherit the lower spatial precision characteristic of later

visual maps where neurons have large receptive fields. Lower precision in later stages is

expected from a hierarchical encoding process with increasing levels of tolerance to size and

position of stimuli (Ito et al., 1995; Kay et al., 2013): the greater size and position tolerance in
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later visual maps reflects a loss of position information likely not recoverable during retrieval.

This information loss puts a limit on the precision of cortical reinstatement, independent of the

fact memory responses also tend to have weaker (i.e., lower amplitude) signals.

How much information is lost in long-term memory?

In addition to architectural constraints on the precision of top-down generated signals, the

precision may also depend on task demands. A comparison between our results and those of

Favila et al. supports this idea. We replicated Favila et al. (2022) in that both studies showed

broader tuning for memory than perception in early visual maps. However, the decreased

precision during memory was more pronounced in Favila’s study than in this one (Figure 7a).

This difference is not likely due to measurement noise, difference in eccentricity (4º vs 7º), or

differences in analysis. We can infer this because the tuning width estimates from both studies

are the same in all maps during perception, and in later maps during memory - the only

differences between them being long-term memory in V1 to V3. We speculate that the difference

arises from encoding demands. The studies differed in the number of remembered targets and

their spacing: every 90 deg in Favila et al (four learned targets), compared to an average of 22.5

deg here (16 targets). The narrow spacing in our study likely required more precise encoding,

leading to narrow tuning in V1-V3 during memory. A post-hoc analysis supports this. Due to the

random placement of stimulus locations within polar angle bins, the spacing between our stimuli

varied (Figure 7c). For some stimuli, the spacing was just a few degrees. For others it was over

30 degrees. Although two stimuli were never simultaneously present, the training protocol

required saccade responses to be closer to the correct target than to any other target. Hence

nearby targets required greater precision. In V1-V3, tuning was narrower for targets with near

neighbors than targets with far neighbors (Figure 7b). The tuning width for far-spaced targets is

more similar to Favila et al’s results. The implication is that increased competition during

memory training invokes a greater demand for spatial precision, resulting in narrower tuning

during recall. Further studies are needed to test whether this effect is driven by hippocampal

pattern separation (Bakker et al., 2008; Yassa and Stark, 2011).
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Figure 7. Systematic differences in spatial tuning of cortical responses.

A) Comparison of spatial tuning (FWHM) estimates across measured visual maps between
Favila et al. (2022; circles) and our study (squares). Both studies show large agreement in their
spatial tuning estimates during the perception condition (filled), and in later visual maps V4-IPS0
during long-term memory retrieval (unfilled). During long-term memory, tuning widths differ in
early visual maps V1-V3. The main differences between ours and the Favila study’s memory
conditions are in the spacing of the stimuli; their study required the retrieval of four targets
equally spaced around the visual field, whereas ours involved the retrieval of 16 targets that
varied in their separation. B) Spatial tuning width estimates across visual maps, split by whether
targets were spaced near to (pink diamonds; spacing: 1.7° - 12°, mean: 7.7°, std: 3.3°) or spaced
far from (blue diamonds; spacing: 19.2° - 31.8°, mean: 23°, std: 3.4°) each other. Also plotted are
the mean tuning width estimates from both the Favila et al. study (circles) and this study
(squares). The tuning widths from far-spaced targets in our study more closely resemble the
broader tuning observed in the Favila et al. study, suggesting the differences between mean width
estimates between our studies is in large part due to the increased precision required of more
closely spaced targets. C) Example of this study’s long-term memory retrieval targets. 16 Target
stimuli, each sampled from within 22.5° bins, vary in their separation from other targets. Some
targets were spaced far apart, while others were spaced near each other, meaning those spaced
near to each other likely required more precision during later recall. This is reflected in the
narrower spatial tuning observed during these trials than for the “far-spaced” trials. Panels A and
B are generated using fig7_03-04-2024.py.

Spatial tuning in visual cortex during working memory is similar to long-term memory

Excluding the early part of the delay period, the responses during working memory were much

more similar to long-term memory than perception in both amplitude and tuning width. This may

be due to a partially overlapping mechanism for both types of memory: As information is fed

back from top-down sources, spatial precision is limited by relatively coarse tuning in the mid- to
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high-level areas through which the information is routed. What limits the precision appears to be

not whether the stimulus was recently viewed (working memory) or retrieved from long-term

storage, but rather that the stimulus representation is maintained in the absence of perceptual

input. In contrast, in psychophysical experiments where a stimulus is viewed dozens to hundreds

of times, highly precise low-level (eye- and orientation-specific) sensory information can be

maintained for up to several minutes (Ishai and Sagi, 1995, 1997).

Surprisingly, responses in V1-V3 were more precise in some long-term memory trials

(near spaced stimuli, see fig. 7b) than working memory, despite the longer delay between

encoding and retrieval for long-term memory. This is likely because during our long-term

memory experiment, subjects viewed the stimuli many times (about 60 times each during

pre-scan training), and for near-spaced stimuli, needed to make fine distinctions. Recent work

shows that when stimuli are highly learned in long-term memory, the working memory of these

stimuli becomes more precise (Miller et al., 2022), similar to the relatively precise

representations in V1-V3 for our near spaced long-term memory stimuli.

The temporal response profile in visual cortex during working memory differs from

long-term memory

While the average spatial tuning across the delay was similar between working and long-term

memory, the temporal profiles were distinct. The most obvious difference is the large initial

transient seen in working memory due to the presence of the stimulus at the onset of the delay.

But even after this transient, we observed a greater amplitude decline in working memory than in

long-term memory for many visual maps. One possibility is that the working memory signal

degrades over time without continuous input via the eyes or retrieval from long-term memory.

There is some support for time-dependent decay in working memory (Brown, 1958; Cowan et

al., 1997; Ricker and Cowan, 2010; Mercer and Barker, 2020), although when, whether, and how

this happens remains controversial (Lewandowsky et al., 2004; Zhang and Luck, 2009; Ricker et

al., 2016). An alternative, garnering increasing recent support, is that the stimulus-driven

response is instead transformed into a more abstract representation throughout the delay period

(Kwak and Curtis, 2022; Li and Curtis, 2023). Such transformation will yield weaker amplitude

in analyses such as ours that do not explicitly model and measure the abstract representation.

We observed no decline in the response during the long-term memory delay: once the

responses peaked, the amplitude remained steady, similar to during perception but unlike during
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working memory. This suggests that during long-term memory, the retrieved perceptual

information is continuously routed to early visual maps. This is consistent with the finding that

visual working memory representations are less tightly linked to detailed image features

compared to representations in long-term memory (Schurgin and Flombaum, 2018).

Decoding vs encoding approaches to studying memory representations

Our use of retinotopic models allowed us to quantify and compare sensory activation during

perception, working memory, and long-term memory. We did this by measuring spatial tuning

functions in all three conditions. This differs from the decoding approach, often used for stimulus

orientation or other stimulus features which do not vary systematically at the mm to cm scale of

fMRI measurement. Decoding results of fMRI responses show reduced accuracy in memory or

imagery compared to perception (Naselaris et al., 2015). Such results have been coupled to the

idea that memory or imagery representations are like weak forms of perception, similar to

viewing stimuli at low contrast (Pearson, 2019). But the decrease in decoding accuracy can arise

from a decrease in signal-to-noise ratio (expected from a weaker stimulus) or a decrease in

precision, or a combination. Our stimulus manipulation allowed us to quantify the precision

independent of amplitude, and showed that both are lower in memory, and that reduced precision

varies with task demands and map location in the visual hierarchy. Separating precision of the

representation from the signal-to-noise ratio is difficult for stimulus features whose

representations vary over a sub mm scale, such as orientation, despite recent advances in

studying their encoding (Roth et al., 2018; Sprague et al., 2018; Gardner and Liu, 2019). In

contrast, it is straightforward in the spatial domain, making spatial manipulations a useful tool

for comparing neural representations across conditions. But spatial manipulations are not just a

tool. Space is a fundamental part of visual representations (Wandell and Winawer, 2011) and its

role in both perception and memory disorders remains a central topic in cognitive neuroscience

(Bisiach and Luzzatti, 1978; Farah, 2003).
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