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Abstract

To mitigate capacity limits of working memory, people allocate resources according to an item’s
relevance. However, the neural mechanisms supporting such a critical operation remain
unknown. Here, we developed computational neuroimaging methods to decode and demix
neural responses associated with multiple items in working memory with different priorities. In
striate and extrastriate cortex, the gain of neural responses tracked the priority of memoranda.
Higher-priority memoranda were decoded with smaller error and lower uncertainty. Moreover,
these neural differences predicted behavioral differences in memory prioritization. Remarkably,
trialwise variability in the magnitude of delay activity in frontal cortex predicted differences in
decoded precision between low and high-priority items in visual cortex. These results suggest a
model in which feedback signals broadcast from frontal cortex sculpt the gain of memory
representations in visual cortex according to behavioral relevance, thus, identifying a neural
mechanism for resource allocation.



Working memory (WM) holds information temporarily and supports decision-making, learning
and planning. A signature of WM is that it has severe limitations in its capacity; the precision of
WM reports declines steeply as the number of items being stored increases 1–6. In addition,
neural activity that supports WM is inherently noisy and the quality of WM representations as
indexed by behavioral reports fluctuates across trials 7–14. Thus, decisions based on WM are
always subject to uncertainty.

Whereas the total resource or capacity of WM is limited, individuals have some control over how
their memory resource is allocated. Humans can prioritize and maintain more precise memory
for items that are more relevant 15–20 or associated with higher reward 20,21. Moreover, people not
only show smaller memory errors, but also report lower uncertainty about their memory for
high-priority items 17, indicating that they have access to priority-dependent uncertainty when
making WM-based decisions.

Allocating WM or attentional resource across spatial locations leads to corresponding
modulations of neural responses in cortical retinotopic visual maps. In both perception- and
WM-based tasks, attention boosts the neural responses at the prioritized locations 18,22–33. While
these studies provided important insights into how the brain allocates WM or attentional
resource flexibly, they primarily focused on neural responses aggregated over trials where items
were maintained in WM at a specific priority level or prioritized at a specific attentional state
(e.g., attended vs. unattended). Without quantifying the quality of WM on a trial-by-trial basis,
previous studies can not address how prioritization affects uncertainty, nor did they investigate
how resource allocation or prioritization could fluctuate across trials. In addition, without
providing a linking model, how WM prioritization or attentional modulations observed in neural
responses are related to behavior remain unresolved. Moreover, the cortical neural networks
controlling the trial-by-trial allocation of WM resource remain unknown.

Theoretical 34–40 and experimental 41–43 work in the perceptual domain has demonstrated that
sensory neurons can use probabilistic population codes to jointly encode stimulus features and
their associated uncertainty. Recently, we extended this theory to spatial WM 13 and
demonstrated that neural activation patterns in extrastriate visual and parietal cortex jointly
encode the remembered spatial position and its trial-by-trial uncertainty. Building on these
findings, here we test the hypothesis that behavioral relevance sculpts the gain of population
neural response, and with the same computational principle—probabilistic population
codes—human brains jointly represent the content and uncertainty of multiple memorized items
with varying priority levels that are concurrently held in WM (Figure. 1C). We built a generative
model-based decoder that used fMRI responses to demix and decode two items held in WM
with different behavioral priorities. This critical extension of the probabilistic decoding approach
13,41,43–45, from one to multiple dimensions, allowed us to decode the content and uncertainty of
multiple WM items on a trial-by-trial basis.

To preview, we measured fMRI responses while participants remembered the locations of two
targets with different levels of behavioral relevance. As hypothesized, the gain of neural
responses varied with target priorities. Higher priority targets were decoded with smaller error
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and lower uncertainty. These neural differences in prioritization predicted memory behavior as
well. We also found evidence that trial-wise delay activity in frontal cortex predicted differences
in decoded precision between low and high-priority items in visual cortex. Together, these
results support a model in which activity in association cortex is the source of feedback signals
that sculpt the gain of WM representations in visual cortex according to behavioral relevance.

Results
We studied how people allocate WM resource during a memory-guided saccade task. In each
trial, participants were presented with two items, each placed in one of two segments
(semicircles) of the visual field that were divided by a precue. The precue identified the item
priorities (Figure 1A and 1B). Participants were asked to remember the locations of the two
items over a 12-second memory delay. Priority was manipulated by the probability that an item
would be cued at the end of the trial. After the memory delay, a response cue appeared,
prompting participants to report the location of one of the two items by a saccadic eye
movement. Participants were twice as likely to be asked to make a memory-guided saccade to
the high compared to the low-priority item. From previous psychophysical studies, we know that
participants improve their performance by allocating more WM resource to the high-priority item
17,20. To identify target regions of interest (ROI) for decoding, we used population receptive field
(pRF;46) modeling to identify visual field maps in visual cortex (V1, V2, V3, V3AB), parietal
cortex (intraparietal sulcus IPS0, IPS1, IPS2, IPS3) and prefrontal cortex (superior precentral
sulcus sPCS, inferior precentral sulcus iPCS).

Figure 1. Procedures and behavioral performance. (A) Each trial started with a precue, which divided the circle
into two segments (semicircles) by the orientation of a gray bar, randomly oriented on each trial. The color of each
of two orthogonal bars in the precue also informed participants in which segment the high-priority item would
appear. After the precue onset, two items simultaneously appeared, one in each segment. The location (polar
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angle) of each item was pseudo-randomly sampled within its semicircle. The WM items were followed by a 12-sec
delay. At the end of the delay, a response cue prompted participants to make a memory-guided saccade to the
memorized location of one of the items. The high-priority item was probed twice as frequently as the low-priority
item The true target location was then re-presented as feedback. (B) Schematic illustrating the information
conveyed by the precue. The dashed lines were not presented during the experiment, but depict how participants
used the precue, as it divided the full circular aperture into two semicircles. The orientation of this division was
random across trials. (C) According to probabilistic population coding theory, two items held in WM would be
represented as two probability distributions, with means and standard deviations representing the memorized
location and the associated uncertainty, respectively. Furthermore, high-priority items are represented with lower
uncertainty. (D) Memory errors were smaller for high- compared to low-priority items (mean absolute error in
degrees polar angle. Left: each dot represents one participant. Right: data points represent mean ± s.e.m. (E)
Saccade response times are faster for high compared to low-priority items, plotted in the same format as in (D). (F)
Memory errors and response times correlate. The black dots/lines represent mean ± s.e.m. Each gray dot
represents one participant. Left, the correlation computed by all the trials; right, the correlation computed using
only the trials that probed the high-priority item.

Priority affects behavioral performance in WM
At the behavioral level, the magnitude of the memory error was smaller for high-priority items
than for low-priority items (permutation test, p = .043), indicating that participants maintained
more precise memory for items that are more relevant for the task (Figure 1B). Prioritization was
also reflected in the response time: saccade response time was shorter for high-priority than
low-priority items (Figure 1D; permutation test, p < .001). In addition, we observed a correlation
between saccade response time and the magnitude of memory error across all trials (M = .063,
bootstrapping test, p = .011; Figure 1E) or among high-priority items (M = .056, bootstrapping
test, p = 0.028; Figure 1F). Response time shows a robust correlation with confidence reports 47,
and is often considered as an indicator of decision uncertainty or confidence 48–50. Thus, our
results indicate that participants’ uncertainty reflects the precision of their memory.

Figure 2. Generative model-based decoding analysis. (A-C) The generative model (encoding model). (A) Using
trials in the training set, each voxel’s polar angle tuning function (the thick black curve) was modeled as a weighted
sum of eight basis functions (the thin colored curves) evenly spaced across polar angle (0° to 360°). (B) A voxel’s
mean response to two items with different priority levels were modeled as a weighted (by two gain factors ghigh-priority
and glow-priority) sum of the voxel’s response to each of the items presented alone. In practice, we fixed the gain of
the high-priority item (ghigh-priority) at 1 and fitted the gain of the low-priority item (glow-priority) as a free parameter using
all trials in the training set. (C) Voxel activity pattern was modeled as a multivariate normal distribution. The scatter
plot is a schematic of a bivariate normal distribution representing the response of two hypothetical voxels (voxel 1
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and voxel 2), where the black dashed line represents the mean response of voxel 1. The mean of the distribution
was determined by the mean response of each voxel. The covariance of the distribution was estimated using the
empirical noise covariance and a theoretically-driven covariance matrix (see Methods). For each ROI, the free
parameters in the generative models were estimated using leave-one-run-out cross-validation. (D-F) Bayesian
decoding model. (D) Given the voxel activity pattern of a trial in the test set (held-out run), a two-dimensional
likelihood function was computed, where the horizontal and vertical dimensions represent the location of high and
low-priority items (polar angle) associated with ghigh-priority and glow-priority respectively. Note that the likelihood function
would only be a symmetric matrix if the estimated weights for the high- and low-priority items are the same. (E)
The decoder further utilizes the knowledge given by the precue, including how the visual field is divided into two
semicircles (each covers a range of 180°) and the associations between the semicircles and their priority levels.
This information was implemented as the prior, a task-constraint matrix consisting of 1s and 0s. (F) A
two-dimensional posterior distribution was computed by pointwise multiplication between the likelihood function
and the prior. We computed one-dimensional posterior distributions for the high- and low-priority items by
marginalizing over the two-dimensional posterior distribution. For each item, the circular mean and circular
standard deviation of the decoded posterior distribution represent decoded location and decoded uncertainty,
respectively.

Bayesian encoding-and-decoding model for multiple items
By extending a previous model for one item 13,41,44,45, we built a generative encoding model for
voxel activity patterns in response to two items with varying priority. The voxel activity pattern
was modeled as a multivariate normal distribution. The mean of this distribution was determined
by each voxel’s spatial (polar angle) tuning curve, which was modeled as a weighted sum of
eight basis functions that evenly tiled visual (polar angle) space (Figure 2A). The model
assumes that neural populations encode two items with different gains based on their priority
levels. Thereby each voxel’s response to two simultaneously presented items was computed as
a weighted sum of its response to each item presented individually (Figure 2B). Even though
conceptually there are two gain factors, when both gain factors are allowed to vary, at least one
of the two factors become interchangeable with the scale of the voxel tuning function (Figure
2A). Therefore, we fixed the weight (gain) of the high-priority item at 1 and fit the weight of the
low-priority item as a free parameter. The covariance of the distribution was estimated using the
empirical noise covariance and a theoretically-driven covariance matrix, as in previous
implementations (see Methods) 13,44,45.

We next assumed that a decision-maker infers WM content using the knowledge of the
generative model. Thus, we implemented a Bayesian decoder that ‘inverted’ the generative
model (Figure 2D-2F). While previous studies utilized Bayesian decoders for a single stimulus
feature 13,41,44,45, here, we faced the additional challenge of demixing two items from the
response in the same neural population. To achieve that, we implemented a decoder that
understood which hemifield was prioritized according to the precue (Figure 2E). On each trial,
we decoded the location of each of the two items as a probability distribution over all possible
locations within its segment. We then used the circular mean of the probability distribution to
represent the decoded location, and the standard deviation of the distribution to represent
decoded uncertainty.
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Figure 3. Decoding 2 items at a single-trial level from an example participant. (A) Decoding results for the
high-priority items. Top: Decoded location (y-axis) plotted against actual target location (x-axis). Bottom: The
distribution of decoding error, computed as the decoded location minus the actual target location. (B) Same as (A)
but for low-priority items.

Priority sculpts WM content and uncertainty held in neural populations
We first examined whether priority affects the accuracy of WM content readout from neural
populations. In an example participant, we visualized decoded location as a function of actual
item location (top rows in Figure 3A and 3B), and as the distribution of decoding errors for each
brain region of interest (ROI; bottom rows in Figure 3A and 3B). In all ROIs, the distribution of
decoding errors showed a single peak around 0°, indicating decodable WM content. Moreover,
we observed that the decoding error was smaller for the high-priority than the low-priority item,
mirroring the effect of prioritization at the behavioral level. At the group level (Figure 4A), we
found that all the ROIs showed above-chance decoding by comparing group-averaged decoding
error to the null distributions estimated by permutations (dashed lines in Figure 4A; permutation
test p < 0.05 for all the ROIs). An ANOVA on the magnitude of decoding error showed a
significant main effect of ROI (permuted two-way repeated-measures ANOVA, F(9,90) = 36.13,
p < 0.001; Figure 4A) and an interaction between ROI and priority (F(9,90) = 5.01, p < 0.001).
Testing the effect of priority on individual ROIs, we found that decoding error was significantly
lower for the high-priority than the low-priority item in V3AB and IPS0 (permutation test p <
0.05; unless otherwise noted, we report p values corrected for multiple comparisons across
ROIs via false discovery rate [FDR] with q = 0.05; Figure 4A). We observed similar results when
using the variability of decoded locations as an index for the decoder’s performance
(Supplementary Figure 1).

We found that priority impacted the neural gain allocated to the items held in WM. While we
fixed the gain of high-priority items to be at 1, the estimated gain factor for low-priority items was
smaller in visual cortex (V1-V3; V3AB) and IPS0 (bootstrapping test against gain = 1, p < 0.05;



Figure 4B). In multiple brain regions, this gain factor closely tracked behavioral prioritization.
Participants with a higher estimated gain for the low-priority item showed less behavioral
prioritization, quantified as the magnitude of memory error of the low-priority item minus that of
the high-priority item (Figure 5). Therefore, differences in the degree to which people prioritized
the items can be explained by a mechanism in which the gain of an encoded item was
modulated according to its priority.

Figure 4. Decoding error and the
estimated gain factor reflect behavioral
prioritization. (A) Averaged magnitude
(absolute value) of decoding error for the
high- and low-priority items across ROIs.
Data points represent mean ± s.e.m. Dotted
lines represent 95% interval of the null
distribution of decoding errors, estimated by
randomly permuting the decoded likelihood
functions across trials. (B) The estimated
gain for the low-priority item. Black data
points represent mean ± s.e.m. Gray data
points represent individual participants.
Asterisk symbols indicate bootstrapping tests
against one. Gain for high-priority item was
fixed at 1 (horizontal dashed line) (C)
Behavioral prioritization (the magnitude of
memory error of the low-priority item minus
that of the high-priority item) plotted against
the estimated gain for the low-priority item.

People not only maintained more precise memory, but also reported being more certain about
their memory for items with higher priority 11,17. Because neural populations utilize probabilistic
information to represent the content held in WM 13, we hypothesized that priority would impact
decoded neural uncertainty. Consistent with this hypothesis, we found that decoded uncertainty
was lower for high- compared to low-priority items (permuted two-way repeated-measures
ANOVA, main effect of priority, F(1,90) = 23.4, p < 0.01; Figure 6A). To further investigate
whether decoded uncertainty reflected priority-dependent quality of WM on a trial-by-trial basis,
for each trial, we estimated a WM prioritization index computed as the difference in decoded
precision (the inverse of the square of decoded uncertainty) divided by the sum of decoded

precision over the two items ( , where and are the decoded uncertainty of the
high- and low-priority item respectively). Conceptually, this index is similar to the ‘attentional
modulation index’ often used in neurophysiological studies 51–53. Because we only had one
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behavioral measure per trial, we binned trials into quartiles of neural WM prioritization index (for
each ROI), and computed each bin’s behavioral prioritization as the difference in the
magnitudes of behavioral memory errors between trials in which the high- and low-priority items
were cued. Remarkably, behavioral prioritization increased with neural WM prioritization in V1,
V2 and V3AB (permutation test p < 0.05; Figure 6B). Therefore, larger differences in decoded
uncertainty between the two items during the memory delay predicted stronger prioritization of
memory-guided behaviors.

Figure 5. Gain modulations
track individual differences in
prioritization. Behavioral
prioritization (the magnitude of
memory error of the low-priority
item minus that of the
high-priority item) plotted
against the estimated gain for
the low-priority item.

Next, we tested whether the uncertainty of the neural representation predicted behavioral
aspects of uncertainty. We leveraged findings from previous studies on perceptual or
WM-guided decisions that response time correlates both with uncertainty and (negatively) with
explicit reports of confidence 47,49. Thus, we treated the response time of memory-guided
saccades as an implicit behavioral index of WM uncertainty, and asked if decoded uncertainty
predicted response time. Indeed, we observed negative correlations between saccade response
time and probe prioritization index (computed similar to WM prioritization index, except that the
denominator was computed as the decoding precision of the probed item minus that of the
non-probed item; Figure 6C and 6D). Specifically, when neural uncertainty was lower for the
probed compared to the non-probed item, response times were faster. We observed similar
results when correlating response time with decoded uncertainty of the probed item solely
(Supplementary Figure 2). These findings further support a connection between the uncertainty
represented by the neural population and the uncertainty at the behavioral level.
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Figure 6. Decoded uncertainty reflects behavioral prioritization. (A) Decoded uncertainty for high- and
low-priority items across ROIs. Data points represent mean ± s.e.m (B) Behavioral prioritization plotted against
WM prioritization. WM prioritization was computed as the difference of decoding precision ( inverse of the square
of decoded uncertainty) divided by the sum of decoding precision over the two items. Each participant’s trials were
binned into four bins with increasing WM prioritization (represented by four colors). For each bin, behavioral
prioritization was computed as the magnitude of memory error for the low-priority item minus that of the
high-priority item. (C) Correlation between saccade response time and the difference in decoded uncertainty
between the item probed by the response cue and the unprobed item. Black data points represent mean ± s.e.m.
Gray data points represent individual participants. (D) Visualizing the correlations in (C) in the format similar to (B).
Each participant’s trials were ordered and binned into four bins (represented by four colors) based on the
difference in decoded uncertainty between the probed and the unprobed item (x-axis) and the saccade response
time was averaged across trials in each bin (y-axis).

Cortical network underlying control of WM resource
Our results so far showed that the quality of WM content represented by neural populations in
visual cortex correlates with behavioral priority. To fully understand the neural circuitry involved
in the control of WM resource, we tested the hypothesis that WM content represented in visual
cortex is modulated by neural activity in brain regions that provide top-down signals associated
with the allocation of WM resource.

We used the decoded uncertainty associated with each item on each trial measured from V3AB
to represent the quality of WM content. We focused on V3AB because it exhibited the highest
decoding performance (Figure 4A) and correlations with behaviors (Figure 5 and 6), a finding
that is consistent with previous results when decoding a single item in spatial VWM 13. The
ability to decode two items concurrently held in WM provided a unique opportunity to investigate
two types of WM control. First, we quantified the total amount of allocated WM resource as the
sum of decoded precision across the two items in each trial (Figure 7A). Second, we quantified
how the WM resource was allocated to each item according to priority. As described in the
previous section, this WM prioritization index was computed as the difference between the
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precision of the high- and low-priority items divided by the sum of decoding precision over the
two items (Figure 7A).

Figure 7. Cortical regions with responses
fluctuating with the quality of WM. (A) We
quantified total WM resource and WM
prioritization using the decoded uncertainty
from each trial. The schematic here
illustrates how total WM resources, or WM
prioritization, may vary while the other
variable is held constant. In (B) to (D),
clusters on the cortical surface exhibiting
responses fluctuating with total WM resource
and WM prioritization are labeled by yellow
and red colors respectively. Here, the total
WM resource and WM prioritization are
computed using the decoded uncertainty
from V3AB. For total WM resource (yellow),
we identified significant clusters in (B)
bilateral parietal cortex starting from V3AB
and covering almost the entire IPS
(intraparietal sulcus), several regions in (C)
prefrontal cortex including sPCS (superior
precentral sulcus), iPCS (inferior precentral
sulcus) and LPFC (lateral prefrontal cortex),
and bilateral clusters in (D) PIT (posterior
inferior temporal cortex). For WM
prioritization (red), the identified clusters
were limited to (C) bilateral sPCS and (D)
right PIT. (E) Delay period activity in right
sPCS correlated with the response times of
memory-guided saccades. Scatterplot
shown for visualization, with trials binned by
delay period response quartile per
participant.

We postulated that the brain regions controlling the allocation of WM resource would exhibit
BOLD amplitudes that fluctuates with either the total WM resource or WM prioritization index
across trials. We identified these regions by whole-brain general linear (GLM) analyses, in which
the regressor of interest was positioned at the time window of WM delay, and with amplitude
varying trial-by-trial based on the total WM resource or WM prioritization. Significant clusters
were identified by a voxel-level threshold (two-tailed t-test on the regression coefficient
thresholding at p < 0.05), followed by a cluster-level size threshold (p < 0.05; see Methods).



Total WM resource decoded from V3AB covaried with delay period amplitude in the following
regions (yellow clusters in Figure 7): (1) bilateral IPS (the posterior end of this cluster was in
V3AB; Figure 7B) (2) right sPCS (3) right iPCS and (4) right lateral prefrontal cortex (rLPFC; the
activated region occupied the anterior end of middle frontal gyrus MFG and inferior frontal
sulcus IFS; Figure 7C) (5) bilateral PIT (posterior inferior temporal cortex; Figure 7D), a region
positioned between the typical lateral and ventral visual field map clusters (see Supplementary
Figure 3).

In a separate GLM, the prioritization of WM resource decoded from V3AB covaried with delay
period amplitude in (1) right PIT and (2) bilateral sPCS (red clusters in Figure 7). No clusters
with activity anti-correlating with total WM resource or neural prioritization were found. As we
considered saccade response time as a behavioral correlate of WM uncertainty, we also
conducted a GLM investigating the brain region with activity varying with saccade response
time. We found a cluster at right sPCS with activity decreasing with saccade response time
(Figure 7E). This cluster overlapped with the sPCS clusters that are associated with total WM
resource and WM prioritization. Overall, we found that the control of WM resource recruits a
large cortical network spanning parietal, prefrontal and temporal lobes.

Discussion
We tested the hypothesis that human cortex represents the uncertainty of WM using a
probabilistic neural code whose gain is modulated by the behavioral relevance of memoranda.
In order to directly test this hypothesis, we developed a Bayesian decoding model to
simultaneously estimate and demix the neural responses of two memory targets, as well as the
impact of priority on those responses (Figure 2). These modeling innovations enabled us to
demonstrate that the gain of neural activity in striate and extrastriate cortex tracked the priorities
of the memoranda (Figure 4B). The neural gain of high-priority items was higher than that of
low-priority items, and this difference predicted the behavior of how participants allocated their
WM resource between the two items (Figure 5). Second, by leveraging a Bayesian decoder that
used knowledge from the generative encoding model, we showed that items with higher priority
were decoded with less error (Figure 4A) and less uncertainty (Figure 6A). Finally, the trial-wise
amplitude of delay period activity in higher-order parts of prefrontal, parietal, and temporal
cortex predicted the total amount of WM resource allocated to the two items, based on the total
decoded uncertainty of the items in visual cortex. Moreover, delay period in prefrontal cortex
predicted the degree with which the high-priority item was prioritized, here based on the
difference in decoded uncertainty of the two items in visual cortex (Figure 7). Below, we discuss
the implications of these associations between parameters of decoded WM representations and
behavioral, neural, and theoretical variables.

The theory of probabilistic population codes explains how precise stimulus information can be
read out from a population of noisy sensory neurons by positing that the population activity
encodes a probability distribution over the stimulus feature 34–40. An advantage of probabilistic
coding schemes is that they represent not only an estimate of the stimulus, but also uncertainty,
whose use may improve decision-making 40,54,55. Indeed, stimulus uncertainty decoded from
neural populations appears to be used by subjects performing perceptual decision making tasks
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41–43,45. In the case of working memory, we recently demonstrated that the content and
uncertainty of memory could be decoded from visual cortex, and subjective reports indicated
that participants were both aware of and used these representations of memory confidence 13.
Building on this prior work and motivated by the probabilistic population coding framework, here,
we manipulated how memory resource was allocated to two differently prioritized targets as a
means to experimentally control changes in neural gain and investigate the impact of such
changes on WM uncertainty represented by neural populations.

When quantifying the relative gain of each target in fMRI activation patterns during our
generative modeling approach, we found that targets with lower priority were encoded with
smaller gain by neural populations, and that differences in gain explained how individuals
distributed their WM resource across the two memoranda (Figure 5). We assume that
prioritization, the process of allocating WM resource, is similar to allocating attention weights.
Thus, our results provide important extensions to previous reports that attention boosts neural
responses at the attended location during perception 22–29,33,56–58. They also agree in general with
computational models that use gain modulation to explain attentional effects on visual
perception 59 and errors in WM 19. During WM delays, the amplitude of fMRI activity in visual
cortex scales with the priority of items stored in memory 18,60. Our findings here provide more
direct evidence that the gain of the prioritized location was enhanced in visual cortex during
WM, and moreover, this gain predicted the behavioral effect of this prioritization (Figure 5).

While the relationship between the gain of a neural population response and stimulus certainty
is the central construct in probabilistic population coding theories 40,61, a direct test of this
relationship has proven challenging. Previous studies estimated the BOLD response gains of
differently prioritized items in WM 18,57, but they lacked a model to link gain modulations with
changes in neural uncertainty and behaviors. Conversely, previous studies that relate decoded
uncertainty, of a single item, to behaviors in perception 41,45 and WM 13 did not investigate the
effect of gain changes on neural uncertainty. We directly addressed this problem by developing
an encoding-and-decoding model that allowed us to demix the neural representations of
multiple WM items whose gains were experimentally under control. Our model allowed us to
estimate, and thus connect, gain and uncertainty. We found that increased gain of high-priority
items impacted both the accuracy and uncertainty of decoded WM representations (Figures 4A
and 6A) in a manner predicted by theories of probabilistic population coding 40,61. These findings
reveal a neural basis by which people incorporate state- or attentional-dependent uncertainty
when making decisions 7,17,62. Critically, nonspecific factors like arousal cannot explain the
specific differences in gain and uncertainty we decoded between the high and low-priority items.
Instead, they were unambiguously driven by the differential allocation of WM resource between
the two items.

All of the decoded measures of WM quality that tracked target priority were strongest in visual
cortex and were absent in frontal cortex (eg, gain in Figure 4B). Given that the frontal cortex
typically shows robust persistent activity during WM 28,63–65, what role then might the frontal
cortex play in WM? To address this question, we performed two analyses to test the hypothesis
that persistent activity in frontal cortex, and perhaps other areas, reflects feedback signals
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associated with the allocation of limited WM resource. These feedback signals presumably
target areas in visual cortex that store WM representations.

First, we identified cortical areas whose trial-wise amplitudes of delay period activity covaried
with the total amount of WM resource allocated to both items, defined as the sum of the
decoded precision in visual cortex across the two items (Figure 7, yellow). This metric bears
resemblance to the total WM resource in models that posit that the neural mechanisms that
support storage of items in WM are limited by a memory resource that can be flexibly distributed
across items 1,3. Total resource decoded from visual cortex was predicted by the amplitude of
delay period activity in cortical areas that match the frontoparietal attention network or dorsal
attention network 66–70. Total resource was also correlated with delay period activity in the right
lateral PFC, similar to a previous study in which we found that variability in delay period activity
in this area predicted decoding accuracy in a single item WM task 31. Overall, the frontoparietal
network we identified resembles cortical networks identified in many visuospatial WM tasks
64,71,72. Nonetheless, since our total WM resource metric includes the decoded precision of both
high- and low-priority items, it might reflect non-specific fluctuations of cognitive factors like
general arousal 73–76 or mental effort 77–80.

Second, we identified cortical areas whose trial-wise amplitudes of delay period activity covaried
with the relative amount of WM resource allocated to low- and high-priority targets. By taking the
difference, our WM prioritization index eliminated obvious non-specific nuisance factors.
Remarkably, delay period activity in the sPCS bilaterally predicted WM prioritization in visual
cortex (Figure 7, red). The human sPCS likely contains the macaque frontal eye field 46,81, which
is the source of feedback signals that target and alter the activity neurons in visual cortex 82–84.
Our results converge well with a recent study that applied TMS pulses during memory delay,
and found that disruptions of sPCS activity during the memory delay diminished the prioritization
effect on behavioral memory error 85. Therefore, feedback signals originating in human sPCS
may sculpt the neural representations of WM targets stored in visual cortex according to the
item’s priority.

Unexpectedly, we found clusters of voxels in area PIT whose delay period activity correlated
with both total WM resource and WM prioritization (Figure 7D). Although not previously
identified as a region which plays a critical role in WM, this area of temporal cortex has been
recently linked to the control of attention. Recent findings from electrophysiology in macaques
86,87 and fMRI in humans 70 suggest that the posterior-and-inferior part of the temporal cortex,
including PIT, is involved in controlling visual attention. Moreover, along with evidence from
network-level functional connectivity studies 88, there are strong white matter tracts that connect
the dorsal IPS - which we have previously linked to trial-level behavioral judgments of WM
uncertainty 13 - to posterior temporal cortex 70,89 providing a pathway by which attention signals
in dorsal and ventral streams may be coordinated, extending the attention network to the ventral
temporal cortex 90. The PIT area we identified sits between two clusters of visual maps (lateral
maps LO1 and LO2 and ventral maps hV4, VO1 and VO2; Supplementary Figure 3), and
consistent with previous fMRI studies 67,88,91 is not retinotopically organized. We highlight that the
anatomical location of this region nearby to multiple extrastriate retinotopic maps and directly
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connected with posterior parietal cortex via a white-matter tract may enable efficient modulation
of feature-specific representations in neighboring and connected regions.

Critically, our results are enabled by our new analysis approach which demixed multiple
simultaneous and overlapping neural representations within activation patterns. This represents
a critical extension of model-based decoding approaches as previous studies only considered
decoding for a single item 13,41,43,45,61. By further extending the generative model to account for
additional features, objects, and their interactions, future studies can build on the same
approach and investigate the role of probabilistic neural codes for joint representations of
multiple features or for natural stimuli.

In summary, we extended probabilistic population code to explain the representations of WM
content and uncertainty for multiple items with different priority levels. Moreover, feedback
signals from frontal cortex control the allocation of WM resource across items by modulating the
gains with which different items are encoded. It then follows that behaviorally, memory
uncertainty stems from decoding or readout of these representations with varying gains .

Methods
Participants
Eleven participants (5 females) took part in the experiment. All participants had normal or
corrected-to-normal vision. The experiments were conducted with the written, informed consent
of each participant. The University Committee on Activities involving Human Subjects at New
York University approved the protocols of the study. Participants received monetary
compensation of $30 per hour.

Task
Participants performed a memory-guided saccade task in the fMRI scanner. Each trial started
with a precue presented at the center of the screen. The precue was a gray annulus divided into
two semicircles by a gray line (a divider) presented at the center of the screen (Figure 1A). The
orientation of the divider was randomly chosen for each trial. A dark gray aperture with a radius
of 15° was presented on the screen throughout the experiment. Participants were instructed to
imagine that the divider in each trial cut the entire aperture into two segments (semicircles;
Figure 1B). In addition, the precue contained a set of priority cues, a blue and a red line,
orthogonal to the divider. The colors of the priority cues informed the participants which segment
will hold the high-priority item. The associations between the priority levels and the colors were
randomly assigned for each participant. One second after the precue onset, two WM items (one
high-priority and one low-priority item, each with a width of 0.65° and a duration of 500 ms) were
presented concurrently on the screen with an eccentricity of 12° from the fixation point (the
precue). The polar angle of the WM items were chosen pseudo-randomly so that each segment
contained one WM item, and the WM items were at least 10 degree away from the orientation of
the divider in terms of polar angle. The WM items were followed by a delay with a duration of 12
seconds, during which participants maintained their gaze at the fixation point while remembering
the locations of both of the WM items. At the end of the delay, a response cue appeared. The
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response cue contained the original divider, and a gray line pointing at one of the two segments,
prompting the participants to report the location of one of the two items by saccadic eye
movements. In 67% of the trials, the high-priority item was probed by the response cue while
the low-priority item was probed in the remaining trials.

Setup
During the experiment, the visual stimuli were presented by an LCD projector located behind the
scanner bore. Participants viewed the stimuli through an angled mirror with a field of view of 52°
by 31°.

Eyetracking
Gaze position was tracked throughout the experiment by EyeLink 1000 Plus infrared
video-based eye tracker (SR Research) mounted beneath the screen inside the scanner bore
operating at 500 Hz. A 13-point calibration routine was conducted at the beginning of each
session and was repeated between runs when necessary.

Behavioral data analysis
Gaze position was analyzed offline, and was used as our measurement of VWM report. We
preprocessed raw gaze data using fully-automated procedures implemented within iEye_ts
(github.com/tommysprague/iEye_ts) to remove blinks, adjust for drift over the course of a run,
recalibrate gaze data trial-by-trial, automatically identify memory-guided saccades, and flag
trials for rejection for behavioral analyses. The details of the parameters used in preprocessing
the gaze data and defining the saccades were the same as those described in a previous study
13. We flagged trials for exclusion when there was no or ill-defined primary saccade, or when the
primary saccade showed excessive error (> 5 degree visual angle). We quantified participants’
behavioral memory error as the (signed) difference between the reported location (saccade
landing position) and WM target position in polar angle. We included all trials for fMRI data
analyses regardless of behavioral exclusion criteria during model estimation to ensure a
balanced sampling of spatial positions, but only included trials with reliable behavioral estimates
for all subsequent analyses including quantifying the decoding performance and correlating
decoded results with behaviors.

Retinotopic mapping and regions of interest (ROI)
Each participant took part in an 1.5-hour fMRI session for retinotopic mapping. The procedures
followed those reported in Mackey et al. 46. During the mapping session, participants maintained
fixation at the screen center while covertly monitoring a bar aperture swiping through the screen
in discrete steps and in four directions: a horizontal bar moving from the top to the bottom, or
from bottom to the top, of the screen; a vertical bar moving from the left to the right, or from the
right to the left, of the screen. The bar was divided into three rectangular segments (one central
segment and two flanking segments) of the same size. Each segment contained a random dot
kinematogram (RDK). Participants were required to report whether the RDK in the left (top) or
the right (bottom) segment moved in the same direction as the RDK in the central segment by
button press before the bar moved into the next step. We adjusted the coherence of the random
dot motion to keep the task at about 75% accuracy. Each session contained eight to nine runs.
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In each run, the bar aperture swept across the screen 12 times, and each sweep consisted of
12 discrete steps. The four sweeping directions were interleaved within each run.

We fit a population receptive field (pRF) model with compressive spatial summation to the
BOLD time series of the retinotopic mapping data 92,93. To define the ROIs, we visualized the
preferred polar angle and eccentricity of the voxels on the cortical surface. We only included
voxels whose response variability can be explained by the pRF model over 10%. ROIs were
defined by visual inspection by identifying reversals of the voxels’ preferred phase angle on the
cortical surface. We defined bilateral dorsal visual ROIs V1, V2, V3, V3AB, IPS0, IPS1, IPS2,
IPS3, iPCS and sPCS, each with a full visual field representation.

MRI acquisition
MRI data were obtained on a Siemens Prisma 3T scanner with a 64-channel head/neck coil.
Functional imaging was collected with a voxel size of 2.53 mm and 44 slices (4x
simultaneous-multi- slice acceleration; FoV 200 3 200 mm, no in-plane acceleration, TE/TR:
30/750 ms, flip angle: 50 deg, Bandwidth: 2290 Hz/pixel; 0.56 ms echo spacing; P→A phase
encoding). The slice prescription was approximately parallel to the calcarine sulcus, covering
most of the occipital and parietal lobes, except for the ventral temporal poles and ventral
orbitofrontal cortex in some subjects. Spin-echo images in the forward and reverse
phase-encoding direction with the same slice prescription and no simultaneous-multi-slice
acceleration were intermittently acquired during each scanning session to estimate a field map
used to correct for local spatial distortions.

MRI data preprocessing
T1-weighted anatomical images were segmented and cortical surfaces were constructed using
Freesurfer (v6.0). EPI time series data for both the VWM and retinotopic mapping experiments
were preprocessed with customized scripts utilizing AFNI functions. We applied B0 field map
correction and reverse-polarity phase-encoding (reverse blip) correction on the functional data.
All functional data were motion-corrected with 6-parameter affine transform, aligned to the
anatomical images, projected onto the cortical surface and re-projected into volume space. This
procedure incurred minimal smoothing perpendicular to the cortical surface. Further spatial
smoothing was applied only to the retinotopic mapping data using 5 mm FWHM on the cortical
surface. Linear trends were removed from the time series. Whenever possible, linear and
nonlinear spatial transformations were concatenated into a single transform operation to
minimize additional smoothing. For the VWM experiments, the time series was first converted
into percentage signal change for each run and then normalized (z-score) across time points
within each run.

Encoding (generative) model
We adapted a generative model based approach to decode the content and the uncertainty of
memorized locations (polar angles). This method was first developed by 41 and 44 to study the
neural processes underlying perceptual decision-making when viewing oriented gratings, and
was later used by us to investigate the uncertainty of spatial locations maintained in VWM 13.
Here, we adapted the model to allow for encoding and decoding for two items.
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In the generative model, the multivariate voxel pattern given the stimulus location was modeled
as a multivariate normal distribution. The mean of the distribution was determined by each
voxel’s polar angle tuning function (voxel response as a function of polar angle). The voxel
tuning function was modeled by a weighted sum of eight basis functions evenly tiling the
location space (Figure 2A). The basis functions are raised sinusoidal functions

where represents half-wave rectification and is the center of the kth channel.

We modeled a voxel’s response to two items as a weighted sum of the voxel’s activity for the
individual items. Thereby, the response of ith voxel given a pair of high- and low-priority items

was modeled as

where is a weighting matrix that determines the weights of the basis functions for each
voxel, and and are the weights for the high- and low-priority items respectively.

Following the TAFKAP method 44, the model considered two sources of noises. First, the noise
was specific to each basis function. This noise term was carried over into each voxel through

the weighting matrix . It modeled the noise that was shared across voxels with similar tuning
functions. followed a zero-mean normal distribution whose covariance matrix was a constant

noise magnitude multiplied with an identity matrix . Second, v was the noise
specific to each voxel, which followed a zero-mean normal distribution . The
covariance matrix was approximated by a rank-one covariance matrix plus a diagonal matrix

where represents the Hadamard product (element-wise product between two matrices), and
is a vector representing the standard deviation of the noise of each voxel. Based on the
generative model, the theoretical covariance matrix of the multivariate voxel pattern given the
stimuli is

where the first two terms are associated with the voxel-specific noise , and the last term is
associated with 41.

In addition to the theoretical covariance matrix, the model also considered the empirical sample
covariance

where is the training data and is the response of the basis functions given the training set
stimuli. Thus, for each training dataset, we assumed that the voxel activity pattern followed a
multivariate normal distribution.
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That is, the covariance matrix was estimated as the sample covariance matrix “shrunk” 94 to a
target covariance matrix, the theoretical covariance matrix . The degree of shrinkage was
determined by a free parameter (see details in 44).

Model fitting and decoding
For each voxel, we averaged the z-scored percentage signal change over a time window late in
the delay (5.25 to 12.00 seconds from the delay onset) and treated it as the input to the model.
With a passive-viewing experiment, we had previously shown that the decodable voxel activity
during this time window is specific to WM and not a mere extension of sensory-evoked response
13. In addition, we conducted voxel selection using a previously published dataset, in which the
same set of participants performed a similar spatial VWM task but with only one item 13. In this
1-item WM experiment, the location of the WM item in each trial was randomly sampled from 32
locations evenly spanning the full circle. We used the averaged voxel activity over the same
time window, and applied ANOVA for each voxel using 32 target locations as a categorical
independent variable and the voxel response as the dependent variable, and we selected 750
voxels with the highest F value for each ROI.

For each participant and each ROI, after selecting the voxels, we used a leave-one-run-out
cross-validation procedure to estimate the free parameters in the generative model. The free
parameters for the covariance matrix ( , , , and ) were estimated using the
procedures proposed in TAFKAP 44. In addition, we fixed the parameter (the weight for the
high-priority item) at 1, and estimated a free parameter (the weight for the low-priority item)
by a grid search, where we choose the pair of and the weight matrix (estimated by
ordinary least squares) that minimizes the mean-square error when estimating the voxel activity
of the training data given the stimuli.

After estimating the free parameters using the training data, for each trial in the testset, we
decoded a two-dimensional posterior probability distribution of the high- and low-priority items
using Bayes rule

Here represents the model parameters, and is the likelihood function (Figure
2D). The decoder, same as the participants, used the information conveyed by the precue in
each trial to perform the task. Specifically, the precue informed the participants the range of the
high- and low-priority item in terms of polar angle (Figure 1B). These constraints were
implemented as the prior , where if and
otherwise (Figure 2E). Here are the boundaries defined by the divider,
constraining the range of each of the two items. As polar angle is a circular variable, the
boundaries were only defined by two values that are 180° apart. Here we write for
simplicity.
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Lastly, we computed one-dimensional posterior distribution for the high- (or low-) priority item by
marginalization

The mean and the standard deviation of this one-dimensional distribution were then used to
represent the decoded location and the decoded uncertainty of the high- (or low-) priority item.

Statistical analysis
To test the effect of prioritization on decoding performance, for each subject and ROI, we
computed the magnitude (absolute value) of memory error (reported location minus actual
target location) and computed the difference between the high- and low-priority item, and
averaged this difference across participants. This difference score was compared to a null
distribution obtained by randomly permuting the label (low-priority and high-priority) of each
participant’s condition-mean and computing the difference score with the same procedure for
2000 times (Figure 4A). The same procedure was used to test the effect of priority levels on
decoded uncertainty (Figure 5A), behavioral memory error (Figure 1C) and saccade response
time (Figure 1D).

To investigate whether decoded uncertainty predicts behavioral prioritization on a trial-by-trial

basis, for each trial we computed a WM prioritization index as . Here, the numerator is
the decoding precision (inverse of the square of decoded uncertainty) of the high-priority item
minus that of the low-priority item, and the denominator is the sum of the two. For each
participant, we then binned the trials into four bins with increasing WM prioritization, and for
each bin, we computed a behavioral prioritization index as the magnitude of memory error for
the low-priority item minus that of the high-priority item. For each ROI, we pooled the data
across all participants (four data points/bins per participant; four bins labeled with four different
colors in Figure 5B) after removing the mean from each participant and computed the
correlation between neural prioritization and behavioral prioritization. For each ROI, The
correlation coefficient was compared to a null distribution estimated by permuting the WM
prioritization index and recomputing the correlation coefficient for 2000 times.

We conducted non-parametric bootstrapping to test the significance of the single-trial
correlations in several analyses, including the correlation between the magnitude of memory
error and response time (Figure 1F), the correlation between response time and the difference
of decoded precision between the probed and unprobed items (Figure 6C) and the correlation
between response time and the probed item (Supplementary Figure 2). For each ROI, we
computed the correlation between the two variables in interest for each participant, and
averaged the correlation coefficients across participants. We then resampled the correlation
coefficients (with replacement) and computed the averaged correlation coefficients. We
repeated this procedure for 2000 iterations to obtain a bootstrapped distribution of the averaged
correlation coefficients. The percentage of the iterations in this distribution that was higher or
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lower than zero was used to compute p-values. We reported p-values corrected for the number
of ROI using FDR with q = 0.05.

Whole-brain general linear model (GLM)
We conducted a GLM analysis to search for the brain regions with response amplitude that
varied with the total WM resource (sum of decoded precision from V3AB over the two items) or
neural prioritization index (decoded precision of the high-priority item minus that of the
low-priority item in V3AB). The GLM contained the following regressors: (1) stimulus evoked
response modeled as a boxcar function with a duration of 500 ms corresponding to the
presentation of the WM items. (2) Behavioral response as a boxcar function with a duration of
1500 ms aligned with the response cue (3) The feedback as a boxcar function with a duration of
1000 ms aligned with the onset of the feedback. Lastly, (4) and (5), where the WM delay activity
was modeled as two regressors, one as a boxcar function spanning the entire WM delay (12
seconds) with the same amplitude across all trials, and the other with the same timing but with
its amplitude modulated trial-by-trial based on the (mean-removed) total WM resource or the
(mean-removed) neural prioritization index. In addition, 12 head motion parameters (roll, pitch,
yaw, x-, y-, z-translation and their first derivative) estimated during preprocessing were included
as nuisance variables to improve the model fits. The above regressors were convolved with a
hemodynamic response function modeled as a gamma function which peaked 4.6 seconds after
the onset of an event. We conducted the GLMs by the 3dDeconvolve function in AFNI. The two
regressors for WM delay, (4) and (5) above, were implemented using the ‘AM2’ option in
3dDeconvolve.

We applied GLM to the BOLD time series (converted to percentage signal change) of each
voxel in the volume space. Because we aim to identify the brain regions with their response
varying with total WM resource or WM prioritization, we focused on the estimated regression

coefficient of the fifth regressor above. We mapped this coefficient from each participant’s
volumetric space to the standard-mesh surface (std.141 space in SUMA) and smoothed each
participant’s data on the surface with a targeted fwhm at 5 mm. We conducted group-level

statistical tests on the on the cortical surface. We first used 3dttest++ function in AFNI to
conduct t-test on each node on the surface. Contiguous nodes that pass this first-level threshold
(uncorrected 2-tailed p < 0.05) were grouped as clusters. These clusters were deemed
significant if their spatial extent passed the size threshold (set at p < 0.05) estimated using
SurfClust and slow_surf_clustsim function in AFNI.
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Supplementary Figure 1. Decoding performance across priority levels. Similar to Figure 4A, but with
decoding performance quantified by decoding variability (standard deviation of decoding error) for the
high- and low-priority items across ROIs. Data points represent mean ± s.e.m.



Supplementary Figure 2. The correlation between saccade response time and the decoded uncertainty of
the probed item. Black data points represent mean ± s.e.m. Gray data points represent individual
participants.



Supplementary Figure 3. Comparisons between PIT related to WM control with clusters of cortical visual
map. PIT is positioned between the lateral visual maps—LO1, LO2, hMT, MSF—and the ventral visual
field maps—hV4, VO1, VO2 (the other two ventral maps PHC1 and PHC2 anterior to VO2 can not be
seen here). The lateral and the ventral visual field maps shown here are Probability Atlas by Wang et al.
95.

https://paperpile.com/c/bxqOgw/zIDBU


Reference

1. Wilken, P. & Ma, W. J. A detection theory account of change detection. J. Vis. 4, 1120–1135

(2004).

2. Alvarez, G. A. & Cavanagh, P. The capacity of visual short-term memory is set both by

visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).

3. Bays, P. M. & Husain, M. Dynamic shifts of limited working memory resources in human

vision. Science 321, 851–854 (2008).

4. Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working memory is set

by allocation of a shared resource. J. Vis. 9, 7.1–11 (2009).

5. Adam, K. C. S., Vogel, E. K. & Awh, E. Clear evidence for item limits in visual working

memory. Cogn. Psychol. 97, 79–97 (2017).

6. Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics and

neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).

7. Rademaker, R. L., Tredway, C. H. & Tong, F. Introspective judgments predict the precision

and likelihood of successful maintenance of visual working memory. J. Vis. 12, 21 (2012).

8. Fougnie, D., Suchow, J. W. & Alvarez, G. A. Variability in the quality of visual working

memory. Nat. Commun. 3, 1229 (2012).

9. Suchow, J. W., Fougnie, D. & Alvarez, G. A. Looking inward and back: Real-time monitoring

of visual working memories. J. Exp. Psychol. Learn. Mem. Cogn. 43, 660–668 (2017).

10. van den Berg, R., Yoo, A. H. & Ma, W. J. Fechner’s law in metacognition: A quantitative

model of visual working memory confidence. Psychol. Rev. 124, 197–214 (2017).

11. Honig, M., Ma, W. J. & Fougnie, D. Humans incorporate trial-to-trial working memory

uncertainty into rewarded decisions. Proc. Natl. Acad. Sci. U. S. A. 117, 8391–8397 (2020).

12. Yoo, A. H., Acerbi, L. & Ma, W. J. Uncertainty is maintained and used in working memory. J.

Vis. 21, 13 (2021).

13. Li, H.-H., Sprague, T. C., Yoo, A. H., Ma, W. J. & Curtis, C. E. Joint representation of

http://paperpile.com/b/bxqOgw/K9VZl
http://paperpile.com/b/bxqOgw/K9VZl
http://paperpile.com/b/bxqOgw/qL9CT
http://paperpile.com/b/bxqOgw/qL9CT
http://paperpile.com/b/bxqOgw/UcQ9d
http://paperpile.com/b/bxqOgw/UcQ9d
http://paperpile.com/b/bxqOgw/CBGZw
http://paperpile.com/b/bxqOgw/CBGZw
http://paperpile.com/b/bxqOgw/3cJ3g
http://paperpile.com/b/bxqOgw/3cJ3g
http://paperpile.com/b/bxqOgw/evujO
http://paperpile.com/b/bxqOgw/evujO
http://paperpile.com/b/bxqOgw/wTG3B
http://paperpile.com/b/bxqOgw/wTG3B
http://paperpile.com/b/bxqOgw/J17ni
http://paperpile.com/b/bxqOgw/J17ni
http://paperpile.com/b/bxqOgw/0J2Ww
http://paperpile.com/b/bxqOgw/0J2Ww
http://paperpile.com/b/bxqOgw/Lswhr
http://paperpile.com/b/bxqOgw/Lswhr
http://paperpile.com/b/bxqOgw/HCYeX
http://paperpile.com/b/bxqOgw/HCYeX
http://paperpile.com/b/bxqOgw/ZQTp0
http://paperpile.com/b/bxqOgw/ZQTp0
http://paperpile.com/b/bxqOgw/aEVeI


working memory and uncertainty in human cortex. Neuron 109, 3699–3712.e6 (2021).

14. Li, A. Y. & Sprague, T. C. Awareness of the relative quality of spatial working memory

representations. Atten. Percept. Psychophys. 85, 1710–1721 (2023).

15. Emrich, S. M., Lockhart, H. A. & Al-Aidroos, N. Attention mediates the flexible allocation of

visual working memory resources. J. Exp. Psychol. Hum. Percept. Perform. 43, 1454–1465

(2017).

16. Dube, B., Emrich, S. M. & Al-Aidroos, N. More than a filter: Feature-based attention

regulates the distribution of visual working memory resources. J. Exp. Psychol. Hum.

Percept. Perform. 43, 1843–1854 (2017).

17. Yoo, A. H., Klyszejko, Z., Curtis, C. E. & Ma, W. J. Strategic allocation of working memory

resource. Sci. Rep. 8, 16162 (2018).

18. Yoo, A. H. et al. Behavioral Prioritization Enhances Working Memory Precision and Neural

Population Gain. J. Cogn. Neurosci. 34, 365–379 (2022).

19. Bays, P. M. Noise in neural populations accounts for errors in working memory. J. Neurosci.

34, 3632–3645 (2014).

20. Klyszejko, Z., Rahmati, M. & Curtis, C. E. Attentional priority determines working memory

precision. Vision Res. 105, 70–76 (2014).

21. Brissenden, J. A., Adkins, T. J., Hsu, Y. T. & Lee, T. G. Reward influences the allocation but

not the availability of resources in visual working memory. bioRxiv 2021.06.08.447414

(2021) doi:10.1101/2021.06.08.447414.

22. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased

activity in human visual cortex during directed attention in the absence of visual stimulation.

Neuron 22, 751–761 (1999).

23. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in

human primary visual cortex. Proc. Natl. Acad. Sci. U. S. A. 96, 3314–3319 (1999).

24. Somers, D. C., Dale, A. M., Seiffert, A. E. & Tootell, R. B. Functional MRI reveals spatially

http://paperpile.com/b/bxqOgw/aEVeI
http://paperpile.com/b/bxqOgw/h5y6c
http://paperpile.com/b/bxqOgw/h5y6c
http://paperpile.com/b/bxqOgw/ZdjHi
http://paperpile.com/b/bxqOgw/ZdjHi
http://paperpile.com/b/bxqOgw/ZdjHi
http://paperpile.com/b/bxqOgw/FPCFz
http://paperpile.com/b/bxqOgw/FPCFz
http://paperpile.com/b/bxqOgw/FPCFz
http://paperpile.com/b/bxqOgw/7AAFJ
http://paperpile.com/b/bxqOgw/7AAFJ
http://paperpile.com/b/bxqOgw/qrlUn
http://paperpile.com/b/bxqOgw/qrlUn
http://paperpile.com/b/bxqOgw/6nf4W
http://paperpile.com/b/bxqOgw/6nf4W
http://paperpile.com/b/bxqOgw/P30uI
http://paperpile.com/b/bxqOgw/P30uI
http://paperpile.com/b/bxqOgw/Fjnxq
http://paperpile.com/b/bxqOgw/Fjnxq
http://paperpile.com/b/bxqOgw/Fjnxq
http://dx.doi.org/10.1101/2021.06.08.447414
http://paperpile.com/b/bxqOgw/Fjnxq
http://paperpile.com/b/bxqOgw/9fe7I
http://paperpile.com/b/bxqOgw/9fe7I
http://paperpile.com/b/bxqOgw/9fe7I
http://paperpile.com/b/bxqOgw/5gxS1
http://paperpile.com/b/bxqOgw/5gxS1
http://paperpile.com/b/bxqOgw/ysZ4Y


specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. U. S.

A. 96, 1663–1668 (1999).

25. Buracas, G. T. & Boynton, G. M. The effect of spatial attention on contrast response

functions in human visual cortex. J. Neurosci. 27, 93–97 (2007).

26. Pestilli, F., Carrasco, M., Heeger, D. J. & Gardner, J. L. Attentional enhancement via

selection and pooling of early sensory responses in human visual cortex. Neuron 72,

832–846 (2011).

27. Sprague, T. C. & Serences, J. T. Attention modulates spatial priority maps in the human

occipital, parietal and frontal cortices. Nat. Neurosci. 16, 1879–1887 (2013).

28. Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H. & Curtis, C. E. Prioritized maps of

space in human frontoparietal cortex. J. Neurosci. 32, 17382–17390 (2012).

29. Kay, K. N., Weiner, K. S. & Grill-Spector, K. Attention reduces spatial uncertainty in human

ventral temporal cortex. Curr. Biol. 25, 595–600 (2015).

30. Sprague, T. C., Ester, E. F. & Serences, J. T. Restoring Latent Visual Working Memory

Representations in Human Cortex. Neuron 91, 694–707 (2016).

31. Rahmati, M., Saber, G. T. & Curtis, C. E. Population Dynamics of Early Visual Cortex during

Working Memory. J. Cogn. Neurosci. 30, 219–233 (2018).

32. Ester, E. F., Nouri, A. & Rodriguez, L. Retrospective Cues Mitigate Information Loss in

Human Cortex during Working Memory Storage. J. Neurosci. 38, 8538–8548 (2018).

33. Sprague, T. C., Itthipuripat, S., Vo, V. A. & Serences, J. T. Dissociable signatures of visual

salience and behavioral relevance across attentional priority maps in human cortex. Journal

of Neurophysiology vol. 119 2153–2165 Preprint at https://doi.org/10.1152/jn.00059.2018

(2018).

34. Paradiso, M. A. A theory for the use of visual orientation information which exploits the

columnar structure of striate cortex. Biol. Cybern. 58, 35–49 (1988).

35. Seung, H. S. & Sompolinsky, H. Simple models for reading neuronal population codes.

http://paperpile.com/b/bxqOgw/ysZ4Y
http://paperpile.com/b/bxqOgw/ysZ4Y
http://paperpile.com/b/bxqOgw/S4r3R
http://paperpile.com/b/bxqOgw/S4r3R
http://paperpile.com/b/bxqOgw/W2rhp
http://paperpile.com/b/bxqOgw/W2rhp
http://paperpile.com/b/bxqOgw/W2rhp
http://paperpile.com/b/bxqOgw/dbAWn
http://paperpile.com/b/bxqOgw/dbAWn
http://paperpile.com/b/bxqOgw/VqXHr
http://paperpile.com/b/bxqOgw/VqXHr
http://paperpile.com/b/bxqOgw/9YETw
http://paperpile.com/b/bxqOgw/9YETw
http://paperpile.com/b/bxqOgw/5rGKI
http://paperpile.com/b/bxqOgw/5rGKI
http://paperpile.com/b/bxqOgw/becoe
http://paperpile.com/b/bxqOgw/becoe
http://paperpile.com/b/bxqOgw/DXvZb
http://paperpile.com/b/bxqOgw/DXvZb
http://paperpile.com/b/bxqOgw/DgYFj
http://paperpile.com/b/bxqOgw/DgYFj
http://paperpile.com/b/bxqOgw/DgYFj
http://dx.doi.org/10.1152/jn.00059.2018
http://paperpile.com/b/bxqOgw/DgYFj
http://paperpile.com/b/bxqOgw/DgYFj
http://paperpile.com/b/bxqOgw/wjP3m
http://paperpile.com/b/bxqOgw/wjP3m
http://paperpile.com/b/bxqOgw/y6Sss


Proc. Natl. Acad. Sci. U. S. A. 90, 10749–10753 (1993).

36. Foldiak, P. in Computation and Neural Systems (eds. Eeckman, F. H. & Bower, J.) (Springer

Science & Business Media, 1993).

37. Sanger, T. D. Probability density estimation for the interpretation of neural population codes.

J. Neurophysiol. 76, 2790–2793 (1996).

38. Zemel, R. S., Dayan, P. & Pouget, A. Probabilistic interpretation of population codes. Neural

Comput. 10, 403–430 (1998).

39. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural

populations. Nat. Neurosci. 9, 690–696 (2006).

40. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic

population codes. Nat. Neurosci. 9, 1432–1438 (2006).

41. van Bergen, R. S., Ma, W. J., Pratte, M. S. & Jehee, J. F. M. Sensory uncertainty decoded

from visual cortex predicts behavior. Nature Neuroscience 18, 1728–1730 (2015).

42. van Bergen, R. S. & Jehee, J. F. M. Probabilistic Representation in Human Visual Cortex

Reflects Uncertainty in Serial Decisions. J. Neurosci. 39, 8164–8176 (2019).

43. Walker, E. Y., Cotton, R. J., Ma, W. J. & Tolias, A. S. A neural basis of probabilistic

computation in visual cortex. Nat. Neurosci. 23, 122–129 (2020).

44. van Bergen, R. S. & Jehee, J. F. M. TAFKAP: An improved method for probabilistic

decoding of cortical activity. bioRxiv 2021.03.04.433946 (2021)

doi:10.1101/2021.03.04.433946.

45. Geurts, L. S., Cooke, J. R. H., van Bergen, R. S. & Jehee, J. F. M. Subjective confidence

reflects representation of Bayesian probability in cortex. Nature human behaviour 6,

294–305 (2022).

46. Mackey, W. E., Winawer, J. & Curtis, C. E. Visual field map clusters in human frontoparietal

cortex. Elife 6, (2017).

47. Rahnev, D. et al. The Confidence Database. Nat Hum Behav 4, 317–325 (2020).

http://paperpile.com/b/bxqOgw/y6Sss
http://paperpile.com/b/bxqOgw/dNu67
http://paperpile.com/b/bxqOgw/dNu67
http://paperpile.com/b/bxqOgw/ugBpo
http://paperpile.com/b/bxqOgw/ugBpo
http://paperpile.com/b/bxqOgw/6Nesw
http://paperpile.com/b/bxqOgw/6Nesw
http://paperpile.com/b/bxqOgw/cCJ3t
http://paperpile.com/b/bxqOgw/cCJ3t
http://paperpile.com/b/bxqOgw/OJ74D
http://paperpile.com/b/bxqOgw/OJ74D
http://paperpile.com/b/bxqOgw/0jzM6
http://paperpile.com/b/bxqOgw/0jzM6
http://paperpile.com/b/bxqOgw/A3H3S
http://paperpile.com/b/bxqOgw/A3H3S
http://paperpile.com/b/bxqOgw/3k42r
http://paperpile.com/b/bxqOgw/3k42r
http://paperpile.com/b/bxqOgw/Rue70
http://paperpile.com/b/bxqOgw/Rue70
http://paperpile.com/b/bxqOgw/Rue70
http://dx.doi.org/10.1101/2021.03.04.433946
http://paperpile.com/b/bxqOgw/Rue70
http://paperpile.com/b/bxqOgw/lFdFG
http://paperpile.com/b/bxqOgw/lFdFG
http://paperpile.com/b/bxqOgw/lFdFG
http://paperpile.com/b/bxqOgw/4ePKx
http://paperpile.com/b/bxqOgw/4ePKx
http://paperpile.com/b/bxqOgw/TsTbx


48. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by

neurons in the parietal cortex. Science 324, 759–764 (2009).

49. Kiani, R., Corthell, L. & Shadlen, M. N. Choice certainty is informed by both evidence and

decision time. Neuron 84, 1329–1342 (2014).

50. Zylberberg, A., Fetsch, C. R. & Shadlen, M. N. The influence of evidence volatility on

choice, reaction time and confidence in a perceptual decision. Elife 5, (2016).

51. Ghose, G. M. & Maunsell, J. H. R. Attentional modulation in visual cortex depends on task

timing. Nature 419, 616–620 (2002).

52. McAdams, C. J. & Reid, R. C. Attention modulates the responses of simple cells in monkey

primary visual cortex. J. Neurosci. 25, 11023–11033 (2005).

53. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical

areas MT and MST. Nature 382, 539–541 (1996).

54. Pouget, A., Dayan, P. & Zemel, R. S. Inference and computation with population codes.

Annu. Rev. Neurosci. 26, 381–410 (2003).

55. Ma, W. J. & Jazayeri, M. Neural coding of uncertainty and probability. Annu. Rev. Neurosci.

37, 205–220 (2014).

56. Itthipuripat, S., Sprague, T. C. & Serences, J. T. Functional MRI and EEG Index

Complementary Attentional Modulations. J. Neurosci. 39, 6162–6179 (2019).

57. Zhou, Y., Curtis, C. E., Sreenivasan, K. K. & Fougnie, D. Common Neural Mechanisms

Control Attention and Working Memory. J. Neurosci. 42, 7110–7120 (2022).

58. Ikkai, A. & Curtis, C. E. Cortical activity time locked to the shift and maintenance of spatial

attention. Cereb. Cortex 18, 1384–1394 (2008).

59. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185

(2009).

60. Yu, Q., Teng, C. & Postle, B. R. Different states of priority recruit different neural

representations in visual working memory. PLoS Biol. 18, e3000769 (2020).

http://paperpile.com/b/bxqOgw/3r6ku
http://paperpile.com/b/bxqOgw/3r6ku
http://paperpile.com/b/bxqOgw/bJCyJ
http://paperpile.com/b/bxqOgw/bJCyJ
http://paperpile.com/b/bxqOgw/dexlm
http://paperpile.com/b/bxqOgw/dexlm
http://paperpile.com/b/bxqOgw/DkbUZ
http://paperpile.com/b/bxqOgw/DkbUZ
http://paperpile.com/b/bxqOgw/3oMRg
http://paperpile.com/b/bxqOgw/3oMRg
http://paperpile.com/b/bxqOgw/FvC5O
http://paperpile.com/b/bxqOgw/FvC5O
http://paperpile.com/b/bxqOgw/17bAD
http://paperpile.com/b/bxqOgw/17bAD
http://paperpile.com/b/bxqOgw/39Z4g
http://paperpile.com/b/bxqOgw/39Z4g
http://paperpile.com/b/bxqOgw/slYve
http://paperpile.com/b/bxqOgw/slYve
http://paperpile.com/b/bxqOgw/aOtcq
http://paperpile.com/b/bxqOgw/aOtcq
http://paperpile.com/b/bxqOgw/UtfRY
http://paperpile.com/b/bxqOgw/UtfRY
http://paperpile.com/b/bxqOgw/XMWP4
http://paperpile.com/b/bxqOgw/XMWP4
http://paperpile.com/b/bxqOgw/Y59Hq
http://paperpile.com/b/bxqOgw/Y59Hq


61. Ma, W. J., Beck, J. M. & Pouget, A. Spiking networks for Bayesian inference and choice.

Curr. Opin. Neurobiol. 18, 217–222 (2008).

62. Denison, R. N., Adler, W. T., Carrasco, M. & Ma, W. J. Humans incorporate

attention-dependent uncertainty into perceptual decisions and confidence. Proceedings of

the National Academy of Sciences 115, 11090–11095 (2018).

63. Hallenbeck, G., Bolaños, A., Sprague, T. & Curtis, C. Frontal and parietal cortex make

distinct contributions to the storage and allocation of resources that support WM. J. Vis. 18,

118–118 (2018).

64. Srimal, R. & Curtis, C. E. Persistent neural activity during the maintenance of spatial

position in working memory. Neuroimage 39, 455–468 (2008).

65. Riggall, A. C. & Postle, B. R. The relationship between working memory storage and

elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32,

12990–12998 (2012).

66. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the

brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

67. Silver, M. A. & Kastner, S. Topographic maps in human frontal and parietal cortex. Trends

Cogn. Sci. 13, 488–495 (2009).

68. Patel, G. H. et al. Functional evolution of new and expanded attention networks in humans.

Proc. Natl. Acad. Sci. U. S. A. 112, 9454–9459 (2015).

69. Alves, P. N., Forkel, S. J., Corbetta, M. & Thiebaut de Schotten, M. The subcortical and

neurochemical organization of the ventral and dorsal attention networks. Commun Biol 5,

1343 (2022).

70. Sani, I. et al. The human endogenous attentional control network includes a

ventro-temporal cortical node. Nat. Commun. 12, 360 (2021).

71. Curtis, C. E. & Sprague, T. C. Persistent Activity During Working Memory From Front to

Back. Front. Neural Circuits 15, 696060 (2021).

http://paperpile.com/b/bxqOgw/wRG9I
http://paperpile.com/b/bxqOgw/wRG9I
http://paperpile.com/b/bxqOgw/MteFA
http://paperpile.com/b/bxqOgw/MteFA
http://paperpile.com/b/bxqOgw/MteFA
http://paperpile.com/b/bxqOgw/kKboc
http://paperpile.com/b/bxqOgw/kKboc
http://paperpile.com/b/bxqOgw/kKboc
http://paperpile.com/b/bxqOgw/rBTfA
http://paperpile.com/b/bxqOgw/rBTfA
http://paperpile.com/b/bxqOgw/PiyAr
http://paperpile.com/b/bxqOgw/PiyAr
http://paperpile.com/b/bxqOgw/PiyAr
http://paperpile.com/b/bxqOgw/IDUZQ
http://paperpile.com/b/bxqOgw/IDUZQ
http://paperpile.com/b/bxqOgw/rOxIz
http://paperpile.com/b/bxqOgw/rOxIz
http://paperpile.com/b/bxqOgw/2vVex
http://paperpile.com/b/bxqOgw/2vVex
http://paperpile.com/b/bxqOgw/ozoTK
http://paperpile.com/b/bxqOgw/ozoTK
http://paperpile.com/b/bxqOgw/ozoTK
http://paperpile.com/b/bxqOgw/jXsfN
http://paperpile.com/b/bxqOgw/jXsfN
http://paperpile.com/b/bxqOgw/Lqv1Y
http://paperpile.com/b/bxqOgw/Lqv1Y


72. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J.-D. The Distributed

Nature of Working Memory. Trends Cogn. Sci. 21, 111–124 (2017).

73. Yellin, D., Berkovich-Ohana, A. & Malach, R. Coupling between pupil fluctuations and

resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex.

Neuroimage 106, 414–427 (2015).

74. Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H. & Balsters, J. H. Pupil

diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 35,

4140–4154 (2014).

75. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet

wakefulness. Neuron 84, 355–362 (2014).

76. Joshi, S. & Gold, J. I. Pupil Size as a Window on Neural Substrates of Cognition. Trends

Cogn. Sci. 24, 466–480 (2020).

77. Master, S. L., Li, S. & Curtis, C. E. Trying harder: how cognitive effort sculpts neural

representations during working memory. bioRxiv (2023) doi:10.1101/2023.12.07.570686.

78. Burlingham, C. S. et al. Task-related hemodynamic responses in human early visual cortex

are modulated by task difficulty and behavioral performance. Elife 11, (2022).

79. Roth, Z. N., Ryoo, M. & Merriam, E. P. Task-related activity in human visual cortex. PLoS

Biol. 18, e3000921 (2020).

80. Levin, E. J., Brissenden, J. A., Fengler, A. & Badre, D. Predicted utility modulates working

memory fidelity in the brain. Cortex 160, 115–133 (2023).

81. Blanke, O. et al. Location of the human frontal eye field as defined by electrical cortical

stimulation: anatomical, functional and electrophysiological characteristics. Neuroreport 11,

1907–1913 (2000).

82. Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal

cortex. Nature 421, 370–373 (2003).

83. Moore, T. & Fallah, M. Microstimulation of the frontal eye field and its effects on covert

http://paperpile.com/b/bxqOgw/yapzQ
http://paperpile.com/b/bxqOgw/yapzQ
http://paperpile.com/b/bxqOgw/eYYFl
http://paperpile.com/b/bxqOgw/eYYFl
http://paperpile.com/b/bxqOgw/eYYFl
http://paperpile.com/b/bxqOgw/EVGXz
http://paperpile.com/b/bxqOgw/EVGXz
http://paperpile.com/b/bxqOgw/EVGXz
http://paperpile.com/b/bxqOgw/ASAI3
http://paperpile.com/b/bxqOgw/ASAI3
http://paperpile.com/b/bxqOgw/YWwGi
http://paperpile.com/b/bxqOgw/YWwGi
http://paperpile.com/b/bxqOgw/vepKw
http://paperpile.com/b/bxqOgw/vepKw
http://dx.doi.org/10.1101/2023.12.07.570686
http://paperpile.com/b/bxqOgw/vepKw
http://paperpile.com/b/bxqOgw/66iQV
http://paperpile.com/b/bxqOgw/66iQV
http://paperpile.com/b/bxqOgw/ZoFxr
http://paperpile.com/b/bxqOgw/ZoFxr
http://paperpile.com/b/bxqOgw/X5V5P
http://paperpile.com/b/bxqOgw/X5V5P
http://paperpile.com/b/bxqOgw/R3D0n
http://paperpile.com/b/bxqOgw/R3D0n
http://paperpile.com/b/bxqOgw/R3D0n
http://paperpile.com/b/bxqOgw/pAUuv
http://paperpile.com/b/bxqOgw/pAUuv
http://paperpile.com/b/bxqOgw/bPXYR


spatial attention. J. Neurophysiol. 91, 152–162 (2004).

84. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High-frequency, long-range

coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210

(2009).

85. Grace E. Hallenbeck, Nathan Tardiff, Thomas C. Sprague, Clayton E. Curtis. Prioritizing of

working memory resources depends on prefrontal cortex. bioRxiv (2024).

86. Stemmann, H. & Freiwald, W. A. Attentive Motion Discrimination Recruits an Area in

Inferotemporal Cortex. J. Neurosci. 36, 11918–11928 (2016).

87. Stemmann, H. & Freiwald, W. A. Evidence for an attentional priority map in inferotemporal

cortex. Proc. Natl. Acad. Sci. U. S. A. 116, 23797–23805 (2019).

88. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic

functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

89. Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and

face-selective cortex. Elife 6, (2017).

90. Ramezanpour, H. & Fallah, M. The role of temporal cortex in the control of attention. Curr

Res Neurobiol 3, 100038 (2022).

91. Wandell, B. A., Dumoulin, S. O. & Brewer, A. A. Visual field maps in human cortex. Neuron

56, 366–383 (2007).

92. Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual

cortex. Neuroimage 39, 647–660 (2008).

93. Kay, K. N., Winawer, J., Mezer, A. & Wandell, B. A. Compressive spatial summation in

human visual cortex. J. Neurophysiol. 110, 481–494 (2013).

94. Ledoit, O. & Wolf, M. A well-conditioned estimator for large-dimensional covariance

matrices. J. Multivar. Anal. 88, 365–411 (2004).

95. Wang, L., Mruczek, R. E. B., Arcaro, M. J. & Kastner, S. Probabilistic Maps of Visual

Topography in Human Cortex. Cereb. Cortex 25, 3911–3931 (2015).

http://paperpile.com/b/bxqOgw/bPXYR
http://paperpile.com/b/bxqOgw/xArgz
http://paperpile.com/b/bxqOgw/xArgz
http://paperpile.com/b/bxqOgw/xArgz
http://paperpile.com/b/bxqOgw/zzXVI
http://paperpile.com/b/bxqOgw/zzXVI
http://paperpile.com/b/bxqOgw/kWF5g
http://paperpile.com/b/bxqOgw/kWF5g
http://paperpile.com/b/bxqOgw/nGQjp
http://paperpile.com/b/bxqOgw/nGQjp
http://paperpile.com/b/bxqOgw/TerqK
http://paperpile.com/b/bxqOgw/TerqK
http://paperpile.com/b/bxqOgw/XqYCU
http://paperpile.com/b/bxqOgw/XqYCU
http://paperpile.com/b/bxqOgw/Bqc4e
http://paperpile.com/b/bxqOgw/Bqc4e
http://paperpile.com/b/bxqOgw/RVNY5
http://paperpile.com/b/bxqOgw/RVNY5
http://paperpile.com/b/bxqOgw/35BwX
http://paperpile.com/b/bxqOgw/35BwX
http://paperpile.com/b/bxqOgw/y5OQA
http://paperpile.com/b/bxqOgw/y5OQA
http://paperpile.com/b/bxqOgw/oC7sM
http://paperpile.com/b/bxqOgw/oC7sM
http://paperpile.com/b/bxqOgw/zIDBU
http://paperpile.com/b/bxqOgw/zIDBU



