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SUMMARY
The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays,
providing amechanism for memory.1–11 Although theory,11,12 including formal networkmodels,13,14 assumes
thatWMcodes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15–19

Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in ma-
caque PFC.20–23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless,
how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown.
To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple
cortical visual field maps.26–48 We found coexisting stable and dynamic neural representations of WM during
a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex
exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of popula-
tion receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM
delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral mem-
ory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the
trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into
an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must
consider both sensory features and their task-relevant abstractions because changes in the format of
memoranda naturally drive neural dynamics.
RESULTS

To facilitate direct comparisons with the existing macaque

neurophysiological studies (e.g., Funahashi et al., Constantinidis

et al., Spaak et al., Murray et al., and Wimmer et al.3,5,8,20,21,49),

we used a memory-guided saccade task to study neural

dynamics during spatial working memory (WM). In each trial, a

brief target dot was presented in the periphery, followed by a

12-s delay. The polar angle of the target spanned the full circle

pseudo-randomly. After the delay, participants reported the

remembered location with a memory-guided saccade (Fig-

ure 1A). Participants were able to make precise memory reports

close to the target (Figure 1B). Participants also underwent a pRF

(population receptive field) mapping session,50,51 allowing us to

define four retinotopic visual (V1, V2, V3, and V3AB) and four

parietal (IPS0, IPS1, IPS2, and IPS3) areas as the regions of inter-

est (ROIs).

Coexistence of stable and dynamic WM codes
We first characterized the dynamics of the WM neural code by a

temporal generalization analysis.20,52,53 We found a stable WM

code in all the ROIs (pink dashed lines in Figure 1C), quantified

by the above-chance decoding performance among the off-di-

agonal elements of the cross-decoding matrices. That is, the
Current Biolo
location of the WM target remained decodable even when the

training data and the testing data came from different time

points. In addition, shortly after the delay onset (�2 s), WM con-

tent was decodable in all ROIs and remained so throughout the

delay. As expected, we observed robust decoding performance

along the on-diagonal elements in all ROIs. We next asked if WM

representations changed over time by testing if the off-diagonal

elements showed significantly worse decoding performance

than their corresponding diagonal elements. In most ROIs, we

observed clusters of off-diagonal elements exhibiting signifi-

cantly reduced decoding performance, indicating a dynamic

WM neural code (light blue lines in Figure 1C), which coexisted

with the stable code.

The decodable signals we observed throughout the delay

do not merely reflect a slow decay of sensory-evoked hemo-

dynamic responses, but instead rely on WM maintenance. We

conducted a passive viewing experiment in which a high-

contrast flickering peripheral ‘‘WM target,’’ treated as an irrel-

evant stimulus by the subjects, was present continuously

throughout the delay and thus did not require WM (Fig-

ure S1A). In this case, we only observed a stable code without

significant dynamics, and the peripheral WM target was only

decodable for a much shorter period of time early in the delay

without persisting through the delay (Figure S1B). In addition,
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Figure 1. Task, behavior, temporal generalization, and stable subspaces

(A) Task. Participants maintained fixation while remembering the location of a target dot presented at a pseudorandom polar angle and at 12� eccentricity from

fixation. At the end of each trial, participants made memory-guided saccades to report their memory and adjusted the length of an arc to report uncertainty.

(B) The mean magnitude (absolute value) of memory error of each participant. The horizontal line represents the group mean with ±1 SEM.

(C) The temporal generalization analysis. Decoders were trained to decode the target location from the fMRI response. The decoders trained with voxel activity

patterns of each time point were tested with the data of all the time points. Pink dashed lines: the stable clusters, the cluster that exhibited above-chance

decoding performance. Blue solid lines: the dynamic clusters, the off-diagonal elements that exhibited lower decoding performance than (both of) their corre-

sponding diagonal elements. Gray dashed lines: the onset of the response cue.

(D) V1 and V3AB response at each time point during the delay period was projected into the stable subspace, the top two principal components (x axis and y axis)

obtained from PCA. The z axis represents time from delay onset. Each curve represents one bin of target location. The legend indicates the location, in the visual

field, represented by each of the eight colors.

(E) Similar to (D) but without visualizing the time axis (z axis); therefore, it is equivalent to the bird’s eye view of (D). Each dot represents data from one time point

during the delay, with more saturated colors representing later time points.

See also Figures S1A, S1B, and S4B.
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with the same dataset, we had previously shown that the

BOLD signals in the WM experiment can predict behavioral

memory error and reported memory uncertainty, supporting

that the representations we analyzed are related to WM-

guided behaviors.46

Neural subspaces
We used principal component analysis (PCA) to visualize the

neural subspaces that represent memorized locations. As an

approach complementary to temporal generalization, PCA

allows us to further (1) quantify how target locations are encoded

topologically, reflecting their relationships in the visual field

space; (2) estimate the geometry underlying the dynamics; and

(3) compare the stability across brain regions.

A coding subspace within which target locationsmaintain their

relative positions throughout the delay would be indicative of a

stable code. We characterized such a stable subspace by

applying PCA on time-averaged BOLD responses, discarding

the dynamical aspect of the data.21 We projected the data of

each single time point during the delay into this stable subspace

and found that in this subspace, target locations were topologi-

cally organized, preserving their spatial relationships across time

during the delay (Figures 1D and 1E).
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We next investigated the dynamic aspects of the neural code

by dividing the 12-s delay into three—the early, middle, and

late—timewindowswith equal length and computing their corre-

sponding neural subspaces. In a type of rotational dynamic, the

same neural subspace is fixed but targets rotate over time on

that space.54–56 We did not observe such rotations when projec-

ting data of individual time points (Figure 2A), or each time

window (Figures 2B, 2C, and S2A), into the early, middle, or

late subspace. Instead of rotating on a subspace, the spread

of the target (or variance explained) shrank when projecting the

data of one time point into the subspace at the other time points.

These results indicate that WM dynamics are driven by a

changing neural subspace (Figure 2D), where different neural

populations represent target locations at different times.

To compare the stability of WM codes across brain regions,

we quantified how much the neural subspace changed over

time by the principal angle between the subspaces of the early

and late time windows within each ROI (STAR Methods).57–59

We found that the stability of WM representations, quantified

by principal angles, varied across ROIs (F(7, 91) = 3.88,

p < 0.00; Figure 2E). We further conducted a trend analysis to

investigate how WM stability varies across cortical hierarchy.

We found a significant linear trend (b = �5.54, p < 0.05),
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Figure 2. Dynamic subspaces

Early, middle, and late neural coding subspaces were identified by applying PCA to voxel activity patterns in three different time windows.

(A) V1 response of each time point during the delay was projected into the early, mid, and late subspaces, where the top two principal components (x axis and y

axis) were derived from PCA. The z axis represents the time from delay onset. Each curve represents one bin of the target locations.

(B) Projections of the early, mid, and late (data points connected with areas with three different gray levels) voxel activity patterns of V1 into the early, mid, or late

subspaces (from the late to right panel).

(C) Same as (B) but for V3AB. See Figure S2A for the projections of other ROIs.

(D) Cartoon illustration of two subspaces from different time points that encode the WM target locations in the high-dimensional space.

(E) The dark blue data points represent the principal angle, between the early and late subspaces, of each ROI (group mean with ±1 SEM). The dashed lines

represent 95%confidence intervals of the distribution of the principal angles computed between the two subspaces estimated by resampling the data from either

the same early (light gray dashed lines) or the late (dark gray dashed lines) time windows.

(F) The main effect of ROI on the principal angle between the late and the early subspaces is larger than that predicted by the principal angle within the same time

window. Top: by a bootstrapping procedure, in each iteration, we resampled the data, estimated two early subspaces, and computed the principal angle between

them.We then computed themain effect of ROI on the principal angle by ANOVA, leading to a bootstrapped distribution of the F values (blue histograms). p value

was computed by comparing the bootstrapped distributions with the empirical F value computed using the principal angle between the early and the late

subspaces (orange vertical lines). Bottom: same as the top figure, but the bootstrapped distribution was computed by resampling the late subspaces.

(G) Pairwise comparisons of the principal angles. After computing the principal angle of each ROI, we tested whether the angle of an ROI was smaller/larger than

that of the other.

See also Figure S2.
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indicating increasing stability with cortical hierarchy, and a

quadratic trend (b = 8.92, p < 0.01), explaining that the principal

angle exhibited a dip around V3AB and IPS0. Pairwise compar-

isons between individual ROIs showed significant differences

when comparing early visual cortex against V3AB and IPS0 (Fig-

ure 2G).We obtained similar results when comparing the stability

using the ratio of variance explained (Figure S2B). We also

computed the principal angles between two subspaces that

were estimated by the data resampled within the same time win-

dow (dashed lines in Figure 2E; also see Figure S2C, in which

data were split into two halves for comparing between-time

and within-time principal angles). As expected, these baseline

values were smaller than the angles computed between time

windows, and they did not show variations across ROIs like

what we observed for the principal angles computed across

time (Figures 2E and 2F). Thus, the stability of WM differed
across ROIs, which cannot be explained by factors such as the

reliability of subspace estimation.

Factors driving WM dynamics
Although previous electrophysiological studies inmacaques15–21

and EEG studies in humans24,25 provided descriptive evidence

for neural dynamics during WM, the reasons for such dynamics

remain unknown. To understand and interpret the WM dynamics

we observed, we leveraged models of each voxel’s receptive

field to compute activation maps by projecting voxel activity pat-

terns into the coordinates of two-dimensional visual field space

(STAR Methods). Here, we focus on two ROIs—V1 and V3AB—

where we observed the strongest and the weakest dynamics

(see Figure S3 for other ROIs).

In V1, the spatial pattern of the population neural response

showed clear changes across time. The response first emerged
Current Biology 33, 3775–3784, September 11, 2023 3777
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Figure 3. Visualization of WM dynamics in V1 and V3AB

(A) V1’s activation maps visualize the projection of voxel activity patterns onto two-dimensional visual field space. Each image represents the activation map

reconstructed for each time sample (TR) during the delay.

(legend continued on next page)
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at the target’s polar angle and eccentricity, consistent with pre-

vious fMRI studies that visualized neural responses in the visual

field space.40,48,60–62 After about 4.5 s, the response at the tar-

get’s eccentricity declined and spread inward across the visual

field in a line between the target and foveal locations (Figures

3A and 3B). Toward the end of the delay, activity peaked at the

foveal region with a tail pointing toward the target. We observed

sequential activity when binning the locations on the activation

maps (at target’s polar angle) by eccentricity—response at the

target’s (far) eccentricity exhibited the earliest peak, followed

by intermediate locations, while the foveal locations peaked at

the latest time points (Figure 3C). Overall, the neural WM code

changed from a bump at the target into a line-like pattern along

the trajectory of the planned memory-guided saccade. In V3AB,

the ROI with the greatest stability, we found that the peak of acti-

vation remained at the target’s peripheral location over the

course of the trial (Figures 3D–3F). Critically, when visualizing

the activation maps for V1 during the passive viewing experi-

ment, we did not observe dynamics like those in the WM exper-

iment. The response emerged at the target’s peripheral location

at the early time points and diminished in the middle of the delay

(Figure S1C). This confirms that the population dynamics we

observed in V1 were not due to sluggish hemodynamics.

We considered two factors that might contribute to the neu-

ral dynamics observed in V1. First, the response cue in the

experiment consisted of a change of color of the fixation point

and the onset of a ring (Figure 1A). V1’s response in the late

time window might reflect the anticipation of the response

cue at the fixation. We conducted the same experiment but

with a response cue consisting only of the peripheral ring

without changes on the fixation point. We observed the same

results when visualizing V1’s population neural response (Fig-

ure S1D). Thus, the anticipation of the response cue at fixation

was not required to drive the neural dynamics we observed.

Second, even when maintaining fixation during the delay,

gaze positions may still exhibit bias toward the target loca-

tions.63 By sorting the trials based on the relative position

between the target and the gaze position, we found that the

neural response in V1 exhibited the same neural dynamics—

an emergence of the line-like patterns over time—regardless

of whether the gaze position exhibited bias toward or away

from the target (Figures S1E–S1G).

Besides eccentricity, changes of neural population’s selec-

tivity for polar angle could also contribute to WM dynamics.

We computed polar angle response functions by collapsing

the two-dimensional activation maps across eccentricity (Fig-

ures 4A and 4B). We fitted von Mises functions to the response

function at each time point with the center, gain, and width as

the free parameters. All ROIs had response functions that

centered around the polar angle of the target. For both V1 and

V3AB, the gain of the response function peaked at about 4–5 s
(B) The horizontal slice over the activation map at vertical location = 0� for each tim

the activity of the early time window was plotted as dashed curves in the middle

(C) Population response for different eccentricities as a function of time. Respons

sector spanning ±30� centered at the target’s polar angle. To visualize response a

near eccentricity in steps of 1�.
(D and E) Same as (A)–(C), but for V3AB.

See also Figures S1 and S3.
and remained above zero throughout the delay. The width of

the functions showed different dynamics between the two

ROIs (Figure 4E). In V3AB, the width remained stable once it

reached the lowest level (similar patterns were observed in V3

and all the ROIs in IPS; Figure S4A). In contrast, the width in

V1 first reached a lower value than V3AB, which is expected as

V1 has a smaller pRF when measured by retinotopic mapping

procedures,51,64 but then increased and became similarly wide

as V3AB. These dynamics may indicate that the neural activity

observed in V1 reflects feedback signals during the later time

points of the delay (see discussion).

Neural code during WM is stable in PFC
Previous studies of the neural population codes during WM in

nonhuman primates have largely focused on the neural activity

in prefrontal cortex (PFC).11 When extending our analyses to

two frontal regions, iPCS (inferior precentral sulcus) and sPCS

(superior precentral sulcus), the regions where we previously

observed topographic organization in the pRF mapping ses-

sion,51 we found decodable WM content in both frontal regions,

but their decoding errorswere larger than other ROIs andwe only

observed stable codes without significant dynamic clusters (Fig-

ure S4B). Projecting the voxel activity pattern of each time point

into the stable subspace extracted by PCA, we found that the lo-

cations of the targets remained largely stable and separable

within the stable subspace (Figure S4C). However, their spatial

topology was not as organized as those observed in the visual

and the parietal cortices.

DISCUSSION

To summarize, by temporal generalization, dimensionality

reduction, subspace geometric analyses, and pRF recons-

truction of neural population response, we found converging

evidence of coexisting stable and dynamic WM codes. The sta-

bility of WM varied across the cortical hierarchy in the human

brain, with early visual cortex exhibiting the strongest dynamics.

Our visualization techniques allowed us to interpret and reveal

the latent factors driving neural dynamics during WM. The V1

population, which initially encoded a narrowly tuned bump of

activation centered on the peripheral target, later represented

a vector along the trajectory of the forthcoming memory-guided

saccade. Thus, neural dynamics in V1 resulted from the format of

the WM representation changing into a behaviorally relevant

abstraction of the stimulus.

It might be tempting to dismiss these dynamics as simply the

delayed hemodynamic response to the retinal stimulation

caused by the target during encoding mixed with the responses

during WM maintenance. Both theoretical and empirical rea-

sons, however, suggest these dynamics are robust, meaningful,

and important. The results from our temporal generalization and
e window (5 TRs per timewindow; TR at 0 s was not included). For comparison,

and late time windows. Data represent mean ± SEM.

e is computed by averaging over the activation maps in (B) constrained within a

s a function of eccentricity, the sector is further segmented into bins from far to

Current Biology 33, 3775–3784, September 11, 2023 3779
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Figure 4. Polar angle response functions

(A) V1’s polar angle response functions as a function of time from delay onset.

(B) Same as (A), but for V3AB.

(C) The center of the response functions. Data represent mean ± SEM.

(D) The gain of the response functions. Data represent mean ± SEM.

(E) The width of the response function. Data represent mean ± SEM.

See also Figure S4A.

ll
Report
dimensionality reduction analyses show striking similarities to

those observed in electrophysiological recordings from ma-

caque PFC during memory-guided saccadeWM tasks. Applying

the same temporal generalization analysis to data from Wata-

nabe and Funahashi,65 Spaak et al.20 identified brief dynamics

limited to the stimulus presentation and the beginning �1 s of

the delay period, which was then followed by stable WM code

that persisted during the delay. Similarly, in a reanalysis of

Constantinidis et al.66 and Romo et al.,7 Murray et al.21 used

dimensionality reduction to identify a dynamical subspace that

only outperformed a stable subspace in representing stimulus

locations during the stimulus presentation and early part of the

delay. Therefore, one common source of dynamics identified in

previous electrophysiological studies and the present study in-

volves the transition from perceptual encoding to WM mainte-

nance. Current theoretical and computational models of WM

do not account for this transformation. Overall, these results

explain why classifiers trained on fMRI patterns during visual

stimulation often show lower decoding performance during

WMmaintenance.27,47,48 Moreover, WM representations remain

decodable in the presence of visual distractors,42,45,47 sugg-

esting that because these representations do not cause

catastrophic interference, they perhaps have different represen-

tational formats.48,54,67,68
3780 Current Biology 33, 3775–3784, September 11, 2023
By projecting voxel activity in V1 into the visual field space, we

found that the stimulus is reformatted into a representation that is

more proximal to the behavior guided by the memory: in

this case, activity at fixation with a line along the trajectory

of the future memory-guided saccade (Figures 3A–3C). Although

the current results do not explain themechanisms underlying the

line-like representation we observed in V1, we can offer some

intriguing possibilities. The location of saccade targets can be

decoded from delay period activity in the human superior collicu-

lus (SC) indicating that participants are rehearsing the forth-

coming memory-guided saccade.43 The SC represents saccade

targets as the error between the current eye position and the

target, where a hill of activity in SC propagates along a path

from the saccade target to fixation as the eye moves.69–71 Feed-

back signals carrying a corollary discharge of the rehearsed

saccades could be routed through the putamen to target V1,

producing a line along the rehearsed trajectory. Although effects

are unknown in V1, saccades also produce traveling waves of

neural activity that propagate from fovea to the saccade target

in V4,72 while classical receptive fields remap to future receptive

fields by sweeping across the visual field in LIP.73 In addition,

neurons in SC show build-up activity during saccade prepara-

tion, and many of these cells are selective for the direction, but

not specific endpoint, of saccades.69 These possibilities can
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be investigated in future research. Interestingly, our findings in

early visual cortex are consistent with recent neurophysiological

studies in mice motor cortex74 and monkey’s PFC,75 showing

that neural activity for motor planning emerged during WM delay

and drove neural dynamics.

Although the hypothesis that the line encoded in the popula-

tion response in V1 represents the forthcoming saccade trajec-

tory is the simplest explanation, we considered others. First,

central support for our reformatting hypothesis is our finding

that the line begins at the target location, then propagates inward

to the foveal part of the map. A sluggish hemodynamic response

to the target stimulus cannot account for these dynamics. In our

control experiment (Figures S1A–S1C), when a memory-guided

saccade was not planned to the peripheral target, we found no

evidence for a line-like representation despite the salience of

the flickering peripheral stimulus and the attention-demanding

task at central fixation. Second, previous studies have found

that neurons’ receptive fields show a ‘‘convergent shift’’ toward

saccade targets.76–79 Even though one could interpret our find-

ings in V1 as a form of receptive field shift, there are major differ-

ences between the two sets of findings: the perisaccadic shift of

receptive fields was found to be time-locked to saccade onsets

with a narrow time window (±100 ms), whereas the dynamics

here were observed several seconds before the response cue.

In addition, convergent receptive field shift occurred to all the

neurons regardless of their receptive field centers relative to

the saccade target76,78,79; the effects here only involved the vox-

els between the fixation and the saccade target. Last, we did not

exclude that the neural dynamics we observed are related to the

dynamics of spatial attention as WM and attention are often

considered to be intertwined.80,81 However, simply adding an

attentional focus82–84 at the fixation cannot explain the line-like

pattern we observed and how neural activity propagated be-

tween the target and fixation. Instead, during the delay, attention

might spread across the fixation and the target, leading to a

pattern similar to the upcoming saccade trajectory. In general,

this interpretation is consistent with the findings that saccade

preparation and attention are partially coupled.85–89

We acknowledge potential limitations in using fMRI to study

neural dynamics. Modeling fast and more complicated neural

dynamics is likely beyond the scope of fMRI given the sluggish-

ness of the hemodynamics. However, if one uses slow, event-

related paradigms with long delay periods combined with fast

BOLD acquisitions (750 ms time sample [TR]) like that used

here, certain dynamics can still be measured with caution. We

confirmed this by simulating neural dynamics similar to those re-

ported in Spaak et al. and Murray et al. and found that such

dynamics can still be characterized after considering the slow-

ness of hemodynamic response function and the temporal reso-

lution of data acquisition here (Figure S4D).

Feedback signals to early visual cortex likely underlie the WM

representations we measured. When quantifying the polar angle

response function evoked by the WM target, the widths of the

functions in early visual cortex widened over time. In contrast,

the widths in higher-level cortical regions were constant

throughout the delay. These results suggest that WM-related

activation in early visual cortex may rely on feedback signals

originating from the downstream regions. During target encod-

ing, polar angle response functions in early visual cortex were
narrow, owing to the small receptive field sizes in these areas.

Feedback signals originating from higher-level cortical areas,

with larger receptive fields, might broaden the widths of the

response functions in early visual cortex during WM. A shift

from bottom-up sensory signals to top-down WM-related feed-

back may contribute to the dynamics in early visual cortex.

These results are consistent with laminar recording in macaque

V190 and fMRI measurements of human V140,48,86 showing that

the persistent activity during WM in V1 has top-down origins.

Moreover, WM representations in early visual cortex are surpris-

ingly flexible. They can, for instance, represent WM target

locations that were never retinally stimulated, but have been

geometrically remapped.40,86 More broadly, when compared to

the precision during stimulus encoding, both mental imagery91

and episodic memory62 evoke wider topographic responses in

early visual cortex consistent with feedback signals originating

from higher cortical areas.

Distinct from the neurophysiological results in macaque PFC,

we find evidence for coexisting stable and dynamicWMcodes in

early visual cortex, not PFC. While we cannot know whether

these differences are due to differences in species or in mea-

surements of neural activity, they parallel a vast literature in

humans showing the importance of early visual cortex for

WM.11 Our results revealed that even during the simplest of

WM tasks, different brain regions represent WM content in

different formats. Neural responses in higher-level visual cortex

and parietal cortex almost exclusively represented the memo-

rized locations. In contrast, representations in early visual cortex

appear to concurrently reflect both a retrospective code (i.e., the

target location) and a reformatted prospective code (i.e., mem-

ory-guided saccade trajectory).

Recently, we demonstrated that voxel activity patterns in

visual cortex are recoded into a line-like spatial coding scheme

when subjects are asked to remember the orientation of a grating

or direction of moving dots.48 Previous neurophysiological

studies on monkeys’ PFC observed neural dynamics of WM

when a neural subspace that represents motor preparation

emerged late in the delay during memory-guided saccades,75

or when memorized items were projected into a different neural

subspace once they were selected to guide visual search.10

These findings, together with our current findings that visual tar-

gets are transformed into representations resembling saccade

trajectories, indicate that WM representations are surprisingly

agile and efficiently adapt to behavioral demands (also see

Myers92). By implementing different task demands, future

studies will solve how the dynamics of WM neural code are

affected by the level of abstraction or reformation of the percep-

tual inputs required in memory-guided behaviors.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Fourteen participants joined the experiment. All participants had normal or corrected-to-normal vision. The experiments were

conducted with the written, informed consent of each participant. The experimental protocols were approved by the University

Committee on Activities involving Human Subjects at New York University, and participants received monetary compensation

($30/h).

METHOD DETAILS

Procedures
The details of the main experiment, the passive viewing experiment and the retinotopic mapping sessions have been previously

reported in Li et al.46 In the main experiment, participants performed a memory-guided saccade task in the fMRI scanner. Each trial

started with the onset of the WM target, a light gray dot (0.65� diameter) with a duration of 500 ms. The target was at 12� eccentricity
and the polar angle of the target was pseudo-randomly sampled from 1 of 32 locations evenly tiling a full circle. The target was

followed by a 12-s delay period, during which the participants were required to maintain their gaze at the fixation point while remem-

bering the location of the target dot. After the delay, the fixation point changed from a light gray circle into a gray filled dot, serving as

the response cue. In addition, an black ring whose radius matches the eccentricity of the target was presented. Upon the onset of the

response cue, participants reported the location of the target by making a saccadic eye movement onto the black ring. The reported

location was first readout by the eye tracker, and a dot was presented at the reported location. Participants were allowed to further

use a manual dial to adjust the reported location, and they pressed a button to finalize the memory report. Upon the button press, an

arc centered at the reported location appeared on the ring. The participants were asked to use the manual dial to adjust the length of

the arc in a post-estimation wager, in which they should reflect the uncertainty of their WM by the length of the arc, the longer the arc

the more uncertain. Participants finalized the uncertainty report by a button press, after which a white dot was presented at the true

target location as the feedback. Participants could earn points if the true target location fell within the arc (see details in Li et al.46). The

results of uncertainty reports are detailed in an earlier study.46
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A subset of participants (n = 6) joined an additional passive viewing experiment (Figure S1A). The timing of this experiment was

similar to the main experiment. Instead of a brief and dim WM target stimulus, we presented a salient high-contrast flickering

checkerboard (0.875 deg radius; 1 cycle/deg spatial frequency; 8 Hz flicker) at the same locations as the main experiment. The

checkerboard was presented for 12.5 s (throughout the WM target period and the delay in Figure 1A), during which the fixation point,

a ‘+’ symbol, changed its width-height ratio, and the participants were asked to attend to the fixation and discriminate the changes of

the fixation symbol, widening vs. heightening, by button presses. We adjusted the aspect ratio of the ‘+’ symbol between runs so the

participants’ performance in the discrimination task maintained at about 75% accuracy. In addition, 6 participants joined a control

experiment, where the procedures of the experiment was the same as the WM experiment, except that the response cue only

consisted of the onset of the ring at the periphery (Figure S1D).

Each participant was scanned for a 1.5–2 h retinotopic mapping session. The procedures of the retinotopic mapping session

followed those used in Mackey et al.51 In short, during the retinotopic mapping session, participants maintained their gaze at the

fixation point while a bar sweeping across the screen 12 times per run in various directions. Participants were required to attentively

track the bar and perform a motion discrimination task based on the random dot kinematograms presented within the bar apertures

see details in Mackey et al.51 We fit a pRF model with compressive spatial summation to the BOLD time series of the retinotopic

mapping session.50,93 We projected the voxels’ preferred phase angle and eccentricity on the cortical surface and defined ROIs

by visual inspection (primarily based on the reversal of voxels’ preferred phase angle). We define bilateral dorsal visual ROIs V1,

V2, V3, V3AB, IPS0, IPS1, IPS2, IPS3 and two frontal ROIs, iPCS and sPCS.

Setup and eye tracking
Visual stimuli were presented by an LCD (VPixx ProPix) projector located behind the scanner bore. Participants viewed the stimuli

through an angled mirror with a field of view of 52� by 31�. We presented a gray circular aperture (30� diameter) on the screen

throughout the experiments. Eye position was recorded with a sampling rate at 500 Hz using an EyeLink 1000 Plus infrared

video-based eye tracker (SR Research) mounted inside the scanner bore. We monitored gaze data and adjusted pupil/corneal

reflection detection parameters as necessary during and/or between each run.

MRI acquisition
We acquired MRI data using a 64-channel head/neck coil on a Siemens Prisma 3T scanner. Functional imaging was collected for

the working memory and passive viewing experiments using 44 slices and a voxel size of 2.53 mm (4x simultaneous-multi-slice

acceleration; FoV was 200 3 200 mm; no in-plane acceleration; TE/TR: 30/750 ms, flip angle: 50 deg, Bandwidth: 2290 Hz/pixel;

0.56 ms echo spacing; P/ A phase encoding). Spin-echo images were acquired intermittently throughout each scanning session

in the forward and reverse phase-encoding direction with identical slice prescription and no simultaneous-multi-slice acceleration

(TE/TR: 45.6/3537 ms; 3 volumes per phase encode direction). These pairs are used to estimate a field map used to correct for local

spatial distortions. The functional imaging data for retinotopic mapping was acquired in a separate session at a higher resolution,

using a slice prescription spanning 56 slices (4x simultaneous-multislice acceleration) with a voxel size of 23 mm (FoV 208 3

208 mm, no in-plane acceleration, TE/TR: 36/1200 ms, flip angle: 66 deg, Bandwidth: 2604 Hz/pixel (0.51 ms echo spacing), P/

A phase encoding).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
As participants were allowed to manually adjust the reported location after the saccades, the final dot location after the manual

adjustment was used as the participants’ memory report. Eye position was analyzed offline. The raw eye position data were first

smoothed with a Gaussian kernel, and was converted into eye velocity using the eye positions of the five neighboring time points.

Saccades were detected when the eye velocities exceeded the median velocity by 5 SDs with a minimum duration of 8 ms. Trials

with ill-defined primary saccade, gaze positions deviated (>2.5�) from the fixation or with the magnitude of memory error larger

than 3 standard deviations were excluded from analyses.

Even when participants were asked to maintain fixation, their gaze positions might still exhibit bias toward the WM targets63 (also

see Figure S1E). To investigate whether the neural dynamics we observed was V1 is driven by the gaze bias, we computed the

averaged gaze position over the delay for each trial. We binned the trials into two bins based on whether the gaze position deviated

toward or away from the target in a trial and visualized V1’s neural dynamics for each bin (Figures S1F and S1G).

Temporal generalization
We decoded the location (polar angle) of the target from the BOLD response. We focused on the BOLD responsemeasured from 0 to

13.5 s from the delay onset (18 TRs in total). Here, decoding is a regression problem where we aimed to predict the target location

(polar angle) y from single-trial BOLD response X (an ntrial3nvoxel matrix) by estimating weightsw. As polar angle is a circular variable,

we trained two regressions to predict ysin = sinðyÞ and ycos = cosðyÞ, and the predicted target location was computed as by =

atan 2ðbysin; bycosÞ. Note that the decoder is trained to predict the target location (which is the same regardless of whether the testing

data was at on- or off-diagonal in Figure 1C), rather than predict the voxel activity pattern of the same time point (the diagonal). Thus, it

is not a given that the decoder would perform worse on the off-diagonal elements. We used support vector regression (with linear
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kernel) in the scikit-learn Python library to estimate the weights. In a 10-fold cross-validation procedure, all the trials from a subject

were separated as the training set (9/10 of the trials) and the testing set (1/10 of the trials). Regression weights were estimated using

the training set’s BOLD response of a particular time point. The weights were then applied to predict the target location using the

testing trials’ BOLD response. The testing was not only applied to the time point same as the time point of the training data, but

was applied to all the time points of the data of the testing trials to investigate the generalizability of the decoders. Thereby, the

training set and the testing set always involved data collected far away in time in terms of data acquisition. This is the case for

on-diagonal and off-diagonal decoding (Figure 1C) so the dynamic code we observed can not be explained by neural or measure-

ment noise that might exhibit systematic autocorrelation in time. The performance of the decoder was quantified as (the absolute

value of) decoding errors averaged across all the trials for each participant. In Figure 1C, we report themean decoding error averaged

over participants.

Statistical tests for the stable and dynamic code
The stable code was represented by above-chance decoding even when the training and the testing data were from different time

points. Thereby we defined the stable code as the elements in the cross-decoding matrix where the decoding error was smaller than

90� (the mean decoding error under the null hypothesis that the decoder generates random predictions uniformly distributed across

the entire polar angle space). We first applied t-test to each element in the cross-decoding matrix to evaluate whether the decoding

error was smaller than 90�. The neighboring elements that were significant in the t-test (without control formultiple comparisons) were

grouped together as a cluster. For each cluster, we then computed the t-score summed across all the elements within. The summed

t-scores was used to determine whether a cluster is significant by a permutation test. The permutation test was done by randomly

permuting the decoders’ predicted target location and computing the t-scores summed over the element in themost-significant clus-

ter. This procedure was repeated 1000 times resulting in a null-hypothesis distribution of the summed t-scores, which was used to

decide whether a cluster was statistically significant in the cross-decoding matrix. Details of this method are described in Maris and

Oostenveld.94

We further investigated whether decoding performance in the off-diagonal elements is distinguishable from the on-diagonal. If at

different time points, WM is represented by the same neural code (i.e., the two weight vectors at different time points are the same

wt1 = wt2), off-diagonal decoding would be statistically indistinguishable from that of on-diagonal decoding. On the other hand, we

considered WM to exhibit dynamics if the off-diagonal elements had statistically poorer performance than their corresponding on-

diagonal elements. Note that for an off-diagonal element to be included in a dynamic cluster, its decoding performance had to be

statistically lower than both of its corresponding on-diagonal elements, ruling out the possibility that the dynamic clusters are defined

simply because the neural or measurement noise was stronger at a specific time point. The cluster-based permutation test was done

by randomly permuting the locations of the on- and off-diagonal elements. Overall, the definitions and the statistical tests for the sta-

ble and dynamic code were similar to those used in a previous monkey neurophysiological study.20

Stable and dynamic subspaces
We used PCA (principal component analysis) to define low-dimensional subspaces that encode target locations. We defined a data

matrix X with a size of nstimulus by nvoxel, which represented the voxel activity patterns averaged across all the trials from the same

stimulus location. For all the PCA conducted in this study, for the purpose of higher signal-to-noise ratio, we binned four neighboring

target locations together resulting in 8 stimulus locations for the data matrix (nstimulus = 8). nvoxel was the number of voxels of each

ROI. X had column-wise zero mean, as the mean of each column was removed. When visualizing the subspaces (Figures 1D, 1E, 2A,

and 2B), for each ROI, we concatenated the voxels across all participants, and applied the PCA on the participant-aggregated ROI.

When computing the indices that quantified the stability of the subspaces—the principal angle and the ratio of variance explained—

PCA was applied to individuals’ ROIs and the indices were computed for each participant.

For the stable subspaces, we disregarded the time-varying information by averaging the data across all the time points that fell

within the stable cluster during the delay (pink dashed lines in Figure 1C). Overall, all the time points within the delay were included

except the first 2 or 3 TRs depending on the ROI. To obtain the principal components (PCs), we applied eigendecomposition on the

covariance matrix XTX = WLWT, where each column of W was a unit-length vector, with a size of nvoxel by 1, representing the

weights of each PC andLwas a diagonal matrix containing the corresponding eigenvalues. Throughout this study, we used the first

two PCswith the largest eigenvalues to define the subspaces; thereby we focused on the weight matrixWwith a size of nvoxel by 2. To

visualize the dynamics of population neural responses in the stable subspace, we projected the data of each time point into the stable

subspace by computing T = XW, where Xwas the data matrix of a single time point and X, with a size of 8 by 2, was the projection of

the voxel activity pattern of each stimulus location in the subspace defined by the top two PCs, PC1 and PC2. T is often referred to as

PC scores in the context of PCA.

To investigate the dynamical aspect of the neural subspaces, we binned the BOLD response during the delay into three time win-

dows: early, middle and late time windows, each with 5 TRs (Figure 2B). We then estimated the subspace for each time window by

applying PCA to the data matrices, Xe, Xm and Xl, which were the BOLD response averaged over each of the time windows.

To quantify how the early and the late subspaces oriented in the high-dimensional neural space, we computed the principal angle,

whichmeasured the alignment between two subspaces.57–59We computed the angle for each subject and each ROI, and we applied

repeated-measures ANOVA to test the effect of ROIs on the principal angle. The principal angle was computed using the method

proposed by Björck and Golub57: We applied singular decomposition to the inner-product matrix WT
eWl = PeCP

T
l , where We and
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Wl, both had a size of nvoxel by 2, were the weighting matrices of the early and the late subspaces obtained by PCA. The matrixCwas

a diagonal matrix whose diagonal elements were the ranked (from small to large) cosines of the principal angles q1 and q2: C =

diagðcosðq1Þ; cosðq2Þ; Þ. The first principal angle was reported in Figure 2E. We also computed the principal angle for two subspaces

from the same timewindow (dashed lines in Figure 2E). This was achieved by a bootstrapping procedure with 1000 iterations. In each

iteration, we resampled the trials twice, computed two subspaces using the data of the same time window and calculated the prin-

cipal angle between them, resulting in a bootstrapped distribution of the principal angle within the early (or the late) time window. We

also compared between-time principal angle and within-time principal angle by splitting each subject’s data into two-halves.

Thereby, the two subspaces used for computing the angles were always from independent datasets (Figure S2C).

In addition to the principal angle, we also computed the ratio of variance explained (RVE), which quantified howmuch the variance

explained decreased when the data of a time window was projected to the subspace of a different time window. For example, for the

data of the early time window Xe, the RVE was computed as VarðXeWlÞ=VarðXeWeÞ (Figure S2B).

Visualizations of WM representations
We used voxels’ pRF parameters to visualize how neural populations represent remembered locations. To compute the activation

maps (Figures 3 and S3), a grid was positioned in the visual field, centered at the fixation. The grid points evenly sampled the visual

space with a step of 0.5� and the entire grid covered ±18� in both horizontal and vertical directions from the fixation point. We

computed the neural activity ai for the grid point i, whose coordinate in the visual field was ðxi; yiÞ, as the weighted sum of voxel

responses ai =

Pnvoxel

v = 1
uvi rvPnvoxel

v = 1
uvi

. Here, gv was the response of voxel v. All the voxels within an ROI were included except the voxels whose

responses in the retinotopic mapping session can not be well-fitted by the pRFmodel (thresholding at variance explained by the pRF

model = 10%). uvi was the weight of voxel v at grid point i, which was determined by the density function of a bivariate circular

Gaussian distribution Nðxi;yi;u;s2IÞ, in which uwas the voxel’s pRF center and swas the voxel’s pRF size. To compute an activation

map for a timewindow and an ROI, we did the following steps:We computed an activationmap for each trial, rotated themap of each

trial to align the target at 0� polar angle, averaged map over all trials for each participant, and lastly we subtracted the grand mean

from the activation map.

We computed each ROI’s polar angle response function from the activation maps. The cartesian coordinates ðxi; yiÞ of each grid

point were first converted to phase angle qi and eccentricity ri. We then binned the grid points based on their phase angle ranging

from -180� to +180� with a step of 8�. We included the grid points with eccentricity smaller than 15�. The polar angle tuning function

was computed as the activity averaged over the grid points within each bin. To quantify the dynamics of polar angle response

functions, the tuning function of each time point was fitted by von Mises distributions ek cosðx�mÞ
2pI0ðkÞ , where I0ðkÞ was the modified Bessel

function of order 0. We reported the gain of the tuning function defined as the difference between the maximum and the minimum

value of the best-fit tuning function, and the tuning width represented by the fitted k value, converted to have a unit in polar angle

degree (Figures 4 and S4A).

Simulations
Our temporal generalization (Figure 1C) showed patterns similar to those observed in two previous neurophysiological studies in

monkey’s prefrontal cortex,20,21 where the dynamical neural code was mainly driven by the transition between an early phase

with a short duration and a late phase with a long duration, presumably reflecting the transition between WM target encoding and

WMmaintenance. Despite the similarity, there exists major differences on the timescale between theirs and our results. In the neuro-

physiological studies, the response in the early phase is much shorter, sustaining only about 500 msec (e.g., Figure 2 in Spaak

et al.20), which seems to be well below the temporal resolution of our measurement. We conducted a simulation to see if the under-

lying neural dynamics of our results are similar to those previously reported in the neurophysiological studies—at a timescale of a few

hundred milliseconds—whether we would observe the dynamical code observed in our temporal generalization.

The procedure and the results of the simulations are illustrated in Figure S4D.We simulated the response of 100 voxels (or neurons)

over a trial. For simplicity, for each voxel we simulated responses with two phases, a 500-msec early response followed by a 12-s late

response. This is done by generating a normally-distributed random number (with zero mean) twice for each voxel, leading to two

multivariate random patterns for the entire population. We let the early response have 50% higher response amplitude than the

late response. The duration and the relative amplitude of the early response was comparable to those reported previously (e.g., Fig-

ure 2 in Spaak et al.20). We then convolved the response of each voxel with a hemodynamic response function (HRF) with a peak

between 4 and 5 s. We downsampled the convolved time series to match the temporal resolution of our measurement: 750 msec

per TR. To speed up the analysis, instead of decoding, we computed the correlation between voxel activity patterns between

different time points (TR), resulting in a representational similarity matrix, which conveys information similar to the cross-decoding

matrix.
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