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The role the prefrontal cortex plays in working memory remains controversial. Here, we tested the
hypothesis that the allocation of limited resources that support working memory is strategically
controlled by a visual map in the human frontal cortex. Remarkably, transcranial magnetic
stimulation of retinotopically-defined superior precentral sulcus disrupted the normal allocation
of resources to memorized items based on their behavioral priority, thus providing causal support
for this hypothesis.

Working memory (WM) refers to our ability to both briefly store and perform operations on information
no longer present. Our highest cognitive abilities depend on its function 1,2, while its dysfunction
cascades into a variety of cognitive symptoms characteristic of psychiatric disease 3. Decades of
evidence 4–7 evolved into mature theories that detail how feature-selective activity persists in populations
of neurons 8,9, thus providing a neural mechanism for WM storage. However, very little progress has
been made in understanding the neural substrates and mechanisms underlying the processes that act
upon and control information stored in WM. While complicated to study, these control processes, the
working in WM, are what distinguish it from passive short-term memory storage 10,11. For instance, one
can prioritize the resources allocated to memoranda based on their behavioral relevance to mitigate the
hallmark capacity limitations of short-term memory 12–15.

We recently found that trialwise variations in the amplitude of persistent BOLD activity in a visual field
map in the superior branch of the precentral sulcus (sPCS) 16,17 in prefrontal cortex predicted the relative
prioritization of two items decoded from visual cortex 18. Here, we causally test the hypothesis that
sPCS controls how resources are allocated to items stored in WM. To do so, we measured the impact
that transcranial magnetic stimulation (TMS) to sPCS had on WM performance. We first replicated our
previous results 13,14,19 showing that when given a precue that indicated the probability with which
memory items would later be tested, memory errors were smaller and responses were faster for items
that were more likely to be probed (Figure 1). Based on these behavioral measures, participants
prioritized high over low-probability items in WM.
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We next asked if TMS to sPCS might disrupt the prioritization of memory resources. In human
participants, we identified the sPCS using a modified population receptive field mapping technique with
fMRI measurements 17. We applied TMS to sPCS during the delay period and measured its effect on
memory for items in the contralesional visual field (i.e., contralateral to the hemisphere where TMS was
applied). We used a biophysical model of the electrical field induced by TMS, applied to each
individual’s brain, which confirmed robust and accurate targeting of the left sPCS (Figure 2A,B; Supp
Figure 2).

Figure 1. Item priority modulates memory error and saccade response times. A, Memory-guided saccade task with
two differentially-prioritized items. A pre-cue indicated the priority of forthcoming items in each visual hemifield.
Participants knew and were trained that high-priority items were probed twice as often as low items. After a retention
interval, a response cue instructed which item should be the goal of the memory-guided saccade. Feedback was given,
followed by an intertrial interval (2,000-3,000 ms; not shown). B, Saccade trajectories of single trials (colored lines) from
an example participant, initiated from central fixation. Memory errors are defined as the Euclidean distance between
endpoints of saccades and true item locations (circles). C, Distribution of memory errors for high- and low-priority items
for an example participant. All items were rotated to a single polar angle from the origin (rightward). Note how memory
errors for low-priority items were greater and the saccade endpoint distribution was less precise. Contours depict the
empirical distribution over saccade endpoints, computed via kernel density estimation. D, At the group (N = 17) level,
memory errors (left) were significantly lower (t(16) = −3.609, p = 0.003) and response times (RT; right) were significantly
faster (t(16) = −5.415, p < 0.001) for high-priority compared to low-priority items. Error bars are standard errors of the
mean (SEM). Lines denote data from individual participants. Dashed lines correspond to participants who were later
excluded from the TMS study for failing to prioritize high-priority items (N = 3). Data are from the right visual hemifield,
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to match the data used in the analysis of TMS effects. Corresponding effects of priority were found in the left hemifield
(Supp Figure 1).

Our overall aim was to test two hypotheses regarding the mechanism by which sPCS supports WM.
First, if sPCS supports WM storage, TMS should corrupt stored memories, resulting in a general
increase in memory errors regardless of item priority (Figure 2C, left). Second, if sPCS controls the
allocation of WM resources, TMS should disrupt the process of prioritization, resulting in more similar
memory errors across the two items (Figure 2C, right).

Focusing on the impact of TMS on memory errors for items in the contralesional visual field as a
function of priority, a two-way repeated-measures ANOVA yielded main effects of priority (high, low)
(F(1,13) = 22.366, p < 0.001), of TMS (none, sPCS) (F(1,13) = 8.545, p = 0.012), and a priority x TMS
interaction (F(1,13) = 17.416, p = 0.001). TMS to sPCS significantly weakened the effect of priority
compared to when no TMS was applied, driving the significant interaction (Figure 2D). Note the
selective increase in accuracy following TMS for low-priority items (t(13) = 4.299, pcorrected < 0.001);
TMS did not impact memory for the high-priority items (pcorrected > 0.05). TMS had no effect on the RT
of memory-guided saccades (Figure 2E, all ps > 0.05). It also had no effect on WM for items (all ps >
0.05) in the ipsilesional hemifield (Supp Figure 3; priority x TMS x hemifield interaction: F(1,13) =
5.809, p = 0.034), providing both an important control comparison and key evidence that TMS effects
were spatially localized to the contralesional hemifield.

Figure 2. TMS to frontal cortex impacts working memory performance. A, The simulated electrical field induced by TMS
targeting the retinotopically-defined left sPCS (white outline), for an example participant. See Supp Figure 2 for simulated
electrical fields for all participants. B, The modeled electrical field strength in left (TMS) and right sPCS. Thin gray lines are
individual participants (N = 14), bars are means across participants. Field strength is significantly greater in the left
hemisphere, demonstrating the spatial specificity of the TMS (t(13) = 13.000, p < 0.001). C, Hypothesized effects of TMS on
low- and high-priority items in working memory. Without TMS (top), we hypothesized that the neural populations representing
the high-priority item have a higher gain than those for the low-priority item. TMS could either corrupt the storage of the
memoranda (bottom left) or it could disrupt the prioritization, such that the items are maintained with closer to equal gain
(bottom right). D, Mean (SEM) memory error plotted as a function of priority and TMS. Note how TMS lessened the
difference between high- and low-priority items. E, Mean (SEM) saccade response times plotted as a function of priority and
TMS. Data in D,E are for the contralesional hemifield. For ipsilesional results and individual participant data see Supp Figures
3 and 4.
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To provide insights into the extent to which TMS to sPCS affected storage versus allocation, we fit
participants’ behavioral memory errors using our modified variable-precision (VP) model of WM 13. The
model treats WM as a continuous, noisy resource, such that across-trial variability in precision results
from intrinsic variability in the amount of resource devoted to a given item 20. Importantly, our version
of the model uses differences in memory precision as a function of item priority to estimate a parameter,
p, that reflects the proportion of memory resources allocated to each item, as well as a parameter, , that𝐽
reflects the total amount of resource available for WM 13. These two model parameters map directly to
the predicted effects of TMS depicted in Figure 2C. Critically, corrupted storage and disrupted
prioritization make clear and divergent predictions about the effects of TMS on memory errors, as a
function of the amount of resource allocated to the high- and low-priority items. However, the pattern of
predicted memory errors from a pure corruption of storage (compare Figure 3A and 3C) were opposite
in direction for both high- and low-priority items from what we observed. The pattern of predicted
memory errors from a pure disruption of prioritization more closely matched the observed effects
(compare Figure 3B and 3C).

Without TMS, the model confirmed that participants allocated significantly more resources to high-
compared to low-priority items (t(13) = 7.430, p < 0.001, H0: p = 0.5). Moreover, replicating our
previous results, the model demonstrated that without TMS participants overallocated resources to the
low and underallocated resources to the high-priority items, relative to the objective probe probabilities
used in the experiment (i.e., high:low 2:1) (t(13) = −5.173, p < 0.001, H0: p = ), perhaps stemming from2

3

a strategy to minimize overall memory error 13. In line with the disrupted prioritization hypothesis, TMS
reduced the amount of WM resource allocated to high-priority items, such that the resource was
allocated more evenly between high- and low-priority items (p parameter; t(13) = −4.031, p = 0.002;
Figure 3D). TMS also affected the total amount of WM resource devoted to the two items ( parameter;𝐽
t(13) = 2.029, p = 0.015; Figure 3E), resulting in a pattern of resource allocation and error that deviated
somewhat from the pure predictions (Figure 3A,B). However, two observations explain these deviations.
First, the model predicts that the impact of TMS on error will be very small for high-priority items
because of the decreasing exponential error function (i.e., note the very small vertical component of the
pink shaded region between the lines denoting high-priority items in Figure 3A,B,C). This is consistent
with our observation of little impact of TMS on high-priority items. Second, high-priority items in the
no TMS condition may have been opposed by a floor effect, limiting how small the errors could be.
Indeed, when compared to a subset of participants for whom we measured WM performance on a
single-item version of the task, errors were statistically indistinguishable from errors for high-priority
items (Supp Figure 5). A combination of perceptual, oculomotor, and memory noise may place an
accuracy limit on WM, preventing the high-priority items from further improvement in the no TMS
condition past a certain allocation of WM resource. Despite the discrepancy, the overall pattern of
observed effects better matched that predicted from a model in which TMS disrupted the allocation of
WM resource according to item priority.
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Figure 3. Predictions and fitted parameters from
variable precision (VP) model of WM. A, In the VP
model, the precision (inverse variance) with which each
item is stored varies from trial-to-trial. The mean
precision is controlled by parameter . In the left plot,𝐽
memory error decreases nonlinearly with increasing ,𝐽
such that equal changes in have a smaller effect on𝐽
error at higher compared to lower precision, as depicted
by the vertical component of the shaded regions between
the bars. Assuming a pure storage corruption by TMS,
the model predicts parameters will shift leftward,𝐽
resulting in greater memory error for both high- and
low-priority items. The right panel plots the predicted
mean memory errors if TMS had a pure effect on
storage. B, Assuming a pure disruption of prioritization
by TMS, each for high- and low-priority would have𝐽
an equal allocation (left). The right panel plots the
predicted mean memory errors if TMS had a pure effect
on prioritization. C, The average derived from fitting𝐽
the VP model to each participant’s data (left). The right
panel plots the predicted mean memory errors from the
model fits (gray solid and dashed lines) against the
observed data (dots, means with SEM error bars,
reproduced from Figure 2D). Note that the observed
effects of TMS, which were well-captured by the model,
are opposite in direction to the storage predictions for
both low- and high-priority items. The effects match
more closely the disrupted prioritization prediction. This
was especially true for the low-priority item, which the
VP model predicts will be most affected by TMS due to
its lower precision. D, The effect of TMS on the
modeled Resource Allocation parameter (p) tested the
possible disruptions of prioritization, as depicted in
Figure 2C. The dashed white vertical line denotes the
true probe probability for the high-priority item. E, The
effect of TMS on the modeled Total Resource parameter
( ) tested the possible corruption of WM storage, as𝐽
depicted in Figure 2C. Bars in D and E depict means
(SEM error bars), and gray lines are individual
participants.

Evidence from previous research suggests that the sPCS, which may be the human homolog of the
monkey frontal eye field (FEF)17,21, may store spatial WM representations. Robust and
spatially-selective BOLD activity persists in human sPCS during WM retention intervals 6,7, and these
patterns of activity can be used to decode item locations 16,22,23, albeit at a coarse level. Moreover,
surgical resections 24 and TMS 25 to sPCS disrupts the accuracy of single item memory-guided saccades.
Parallel findings both from neurophysiology 4,26 and inactivation 27,28 studies of monkey FEF further
establish the idea that FEF stores spatial WM representations. The current results, however, invite a
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reconsideration of this interpretation. We hypothesize that instead of supporting a storage mechanism,
the human sPCS—and perhaps the monkey FEF—prioritizes the allocation of resources that support
WM representations, consistent with our recent finding that BOLD activity in sPCS predicted
prioritization in visual cortex 18. This interpretation is reinforced by findings on the role of sPCS in
attention. Consonant with our results, previous studies showed that TMS to sPCS eliminated
performance costs induced by invalid cues in the ipsilesional hemifield, but had no effects on the
benefits of valid cues in the contralesional hemifield 29,30. Considering that low-priority items are less
likely to be tested, they resemble invalidly-cued items in studies of attention, suggesting sPCS may have
a general role in maintaining prioritized maps of space. These maps could then be used to exert
top-down influence on regions supporting WM storage. The present results provide causal support for
the hypothesis that sPCS prioritizes, rather than stores, information in memory.
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Methods

Participants

Seventeen neurologically healthy human participants (9 female, 8 male; mean age: 26.5, range: 22–33)
performed in the no TMS version of the experiment. All participants had normal to corrected normal
vision and were screened for TMS eligibility and excluded from participation if they had any
brain-related medical issues or were currently taking certain drugs (e.g., antidepressants, amphetamines,
chemotherapy, etc.). All participants gave written, informed consent and were compensated $10 per no
TMS session and $50 per TMS session. After the initial analyses of the no TMS condition, three
participants were excluded from the TMS analyses for failure to show a priority effect (i.e., greater
saccade error on the low-priority items compared to the high-priority items; see Figure 1D). All
subsequent analyses were performed with the remaining N = 14 (9 female, 5 male) participants.

Experimental Procedures 

Participants were seated 56 cm from the stimulus presentation monitor with their heads supported by a
chin rest, which minimized movement during the task. Participants completed a two-item
memory-guided saccade task (Figure 1A). The priority of the two items was established by manipulating
which item was more likely to be probed for response after the delay, where the high-priority item was
probed twice as often as the low-priority item. After participants attained fixation, a priority cue was
displayed centrally, within the fixation crosshairs (1,000 ms). The priority cue indicated which half of
the visual field (left or right) would contain the high-priority item, and which would contain the
low-priority item. Subsequently, two WM items (small white dots subtending 0.25°) appeared in the
periphery (500 ms). The position of the items was previously determined such that one occupied the left
hemifield and one occupied the right on every trial. After a delay period (2,500–3,500 ms, jittered), a
response cue (half-circle, 700 ms) appeared at fixation, indicating which of the two items was the goal
of a memory-guided saccade. Feedback was then provided by redisplaying the probed memory item
(800 ms) and having participants make a corrective saccade to this location. An intertrial interval (ITI)
then followed (2,000–3,000 ms). Participants were instructed to maintain fixation at the center of the
screen during each trial, except when directed by the response cue to make a memory-guided saccade to
the position of the cued item. They performed 36 trials/run, and completed 9 runs of the task on average
(range: 4–17 runs) per TMS condition (no TMS, TMS to sPCS).

Transcranial Magnetic Stimulation (TMS)

We administered TMS using a 70 mm figure-eight air film coil (The Magstim Company, UK). The coil
was positioned using the Brainsight frameless stereotaxic neuronavigation system (Brainsight, Rogue
Research) and guided by a reconstructed T1 anatomical brain image. The coil was positioned
tangentially on the scalp, with the coil parallel to the left superior precentral sulcus (sPCS) (i.e., with the
coil handle perpendicularly bisecting the principle axis of the target region). TMS was applied in 3
pulses at 50Hz in the middle of the delay period of every trial, which in previous studies produced
reliable effects across participants 25. Applying TMS to only one hemisphere confined the effect to the
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opposing visual field and consequently one memory item at a time, since one memory item occupied
each hemifield. To limit the total number of TMS pulses in a day, the TMS condition was conducted
over two sessions.  

Given intersubject variability, including but not limited to cortical excitability and scalp-to-cortex
distance 31, we calibrated the TMS stimulator output per participant by measuring resting motor
threshold (rMT) in a separate session, prior to the experimental TMS sessions. Motor threshold is stable
over time, such that it can be used as a basis to target individualized protocols 32. To determine motor
threshold, the coil was positioned 45° to the midsagittal plane on the precentral gyrus, and stimulation
was delivered starting at 50% maximal stimulator output (MSO). This was modulated in 5% increments
until visual twitches of the first dorsal interosseous muscle were evoked consistently, at which time
MSO was steadily decreased until twitches were evoked either 3/6 or 5/10 times. rMT varied between
52% and 72% MSO across participants. During experimental sessions, we then applied TMS at 80% of
each individual’s rMT.

We modeled the electrical field induced by TMS using SimNIBS (v. 3.2.6) 33. SimNIBS uses a
segmentation of the anatomical scan along with the TMS parameters to compute the electrical field,
taking into account the conductivities of different tissue types. We visualized the strength of the field for
each participant in native anatomical space (Supp Figure 2). To verify the spatial specificity of the
stimulation, we extracted the average field strength from retinotopically-defined sPCS ROIs bilaterally
(see Population receptive field mapping and definition of the sPCS below) and compared the field
strength in the left sPCS TMS target to the field strength in right sPCS (Figure 2B).

Oculomotor procedures and analysis

Monocular tracking of gaze position was performed with the Eyelink 1000 (SR Research) recorded at
500 Hz. A 9-point calibration routine was performed at the start of each run. If, after multiple attempts,
9-point calibration failed, 5-point calibration was performed. 

We preprocessed raw gaze data using custom software developed and regularly used by our lab (iEye,
https://github.com/clayspacelab/iEye). This software implements an automated procedure to remove
blinks, smooth the data (Gaussian kernel, 5 ms SD), and drift correct and calibrate each trial using
epochs when it is known the eye is at fixation (delay) or the true item location (feedback).
Memory-guided saccades were identified during the response period using a velocity threshold of 30
degrees/second. Trials were flagged for exclusion based on the following criteria: broken fixation during
the delay; identified saccade < 2° in amplitude or > 150 ms in duration. Because TMS can often cause a
facial flinch, including eyelid contraction, we removed 50 ms prior to and 150 ms following TMS
pulses, ensuring any contraction-induced artifacts would not trigger the exclusion criteria. Overall, this
resulted in usable data from 83% of trials on average, with a range of 54%–98% across participants.
These procedures resulted in two behavioral outputs per trial: the endpoint of the memory-guided
saccade and the initiation, or response time (RT) of the memory-guided saccade. We derived our primary
behavioral measure—memory error—from the saccade endpoints by computing the Euclidean distance
between the location of the saccade and the true location of the item.
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Statistical analysis

All statistical analyses were performed via permutation testing (10,000 samples). Repeated-measures
analysis of variance was implemented using the permuco package 34 in R 35. We performed t-tests in
Matlab (Mathworks) using the PERMUTOOLS package 36. Post-hoc tests were corrected for multiple
comparisons using the Tmax method 37.

Variable-precision model

To better isolate the mechanisms underlying the behavioral effects of TMS, we fit a variant of the
variable-precision (VP) model to participants’ memory error data 20. The VP model is well-validated and
has previously been shown to account for load effects 20 and priority effects 13 in WM. The model
assumes that the precision of working memory, J, is variable across trials and items, where J is
gamma-distributed with mean and scale parameter . This formulation entails that the Gamma𝐽 τ

precision distribution has a shape parameter and and variance . We modeled memory error, ε,𝑘 = 𝐽
τ 𝐽τ

as a Rayleigh distribution with parameter , where ε is Euclidean distance, ε ≡ ||x−s||, x is the saccade1
𝐽

endpoint, and s is the true item location. Therefore, the probability of error ε for a given precision

distribution (e.g., in a given condition) is p(ε) = , with expected error E[ε]∫ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(ε | 𝐽)Γ(𝐽 | 𝐽, τ)𝑑𝐽

= . E[ε] is a nonlinear decreasing function of , such that there is less change in error as∫ ε𝑝(ε)𝑑ε 𝐽 𝐽

increases (Figure 3). Following Yoo et al. (2018) 13, for the two-item priority task we assume that
observers allocate a total amount of WM resource, denoted , between the items in proportion to an𝐽

𝑡𝑜𝑡𝑎𝑙

allocation parameter, , such that the amount of resource allocated to the high priority item is𝑝
and the amount of resource allocated to the low-priority item is .𝐽

ℎ𝑖𝑔ℎ
= 𝑝𝐽

𝑡𝑜𝑡𝑎𝑙
𝐽

𝑙𝑜𝑤
= (1 − 𝑝) 𝐽

𝑡𝑜𝑡𝑎𝑙

To assess the effects of TMS, we extended the model to allow and to vary between conditions,𝑝 𝐽
𝑡𝑜𝑡𝑎𝑙

which were intended to model effects of TMS on prioritization and WM storage, respectively. We fixed
across conditions as we did not have any theoretically-motivated hypotheses about this parameter andτ

did not have sufficient data to precisely estimate both the mean and scale of the precision distribution
separately for each condition. As such, the model had five free parameters: 𝐽

𝑡𝑜𝑡𝑎𝑙,𝑛𝑜𝑇𝑀𝑆
,  𝐽

𝑡𝑜𝑡𝑎𝑙,𝑠𝑃𝐶𝑆
,  

, , .𝑝
𝑛𝑜𝑇𝑀𝑆

𝑝
𝑠𝑃𝐶𝑆

τ

We fit the parameters to each participant’s unaggregated, trial-level data using maximum-likelihood
estimation in Matlab (fmincon). To avoid local minima, we fit the model 20 times per participant with
different starting points for the optimization. Because there were approximately twice as much data for
the high-priority condition as the low, we additionally randomly subsampled without replacement from
the high-priority data on each iteration to match the amount of data for the low-priority condition, in
order to avoid overfitting the model to the high-priority data. To generate behavioral predictions from
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the resulting model fits, we computed the prediction for the fit parameters from each model iteration and
then averaged across the 20 iterations for display. We then averaged the parameter estimates across
iterations prior to statistical analysis.

Magnetic Resonance Imaging

Data were collected at New York University Center for Brain Imaging using a 3T Siemens Prisma MRI
scanner (N = 14). Images were acquired using a Siemens 64-channel head/neck radiofrequency coil.
Volumes were acquired using a T2*-sensitive echo planar imaging pulse sequence (repetition time (TR),
1200 ms; echo time (TE), 36 ms; flip angle, 66°; 56 slices; 2 mm x 2 mm x 2 mm voxels).
High-resolution T1-weighted images (0.8 mm x 0.8 mm x 0.8 mm voxels) were collected at the end of
the session, with the same slice prescriptions as for the functional data, and used for registration,
segmentation, and display. Multiple distortion scans (TR 6,000 ms; TE 63.4 ms; flip angle, 90°; 56
slices; 2 mm x 2 mm x 2 mm voxels) were collected during each scanning session. The remaining three
participants’ data were acquired using a 3T Siemens Allegra head-only scanner using parameters
described in 17.

Population receptive field mapping and definition of the sPCS

To define sPCS, each participant underwent retinotopic mapping in the MRI scanner, following
established procedures 17. Participants maintained fixation at the screen center while covertly monitoring
a bar aperture sweeping across the screen in discrete steps, oriented vertically or horizontally, depending
on whether the sweep originated from the left or right or top or bottom of the screen, respectively. The
bar was divided in thirds, with each segment containing a random dot kinematogram (RDK) used in a
match-to-sample task. Participants reported which of the flanking RDKs moved in the same direction as
the central RDK. Participants performed 8–12 runs of the task, with 12 bar sweeps per run. Task
difficulty was staircased such that accuracy was maintained at 70–80%.

The resulting BOLD time series were fitted with a population receptive field (pRF) model with
compressive spatial summation 38,39. We then identified the left sPCS ROI used as the TMS target on the
basis of both retinotopic and anatomical criteria. First, we visualized polar angle and eccentricity maps
on the cortical surface, thresholded to include only voxels for which the pRF model explained > 10% of
the variance. sPCS was then identified as the area at the junction of the superior prefrontal and
precentral sulci containing a retinotopically organized representation of the contralateral visual field.
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Supplementary Materials

Supplementary Figure 1 —
Memory error and saccade
response times, left visual
hemifield. Behavioral performance
(N = 17): memory error (left;
calculated as Euclidean distance
from the item) and saccade RT
(right) for items in the left hemifield.
Errors were significantly lower
(t(16) = −3.692, p = 0.002) and RTs
were significantly faster (t(16) =
−3.985, p < 0.001) for high-priority
compared to low-priority items.
Error bars are standard errors of the
mean (SEM). Lines are data from
individual participants.
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Supplementary Figure 2 — Simulated electrical fields induced by TMS. Simulated electrical field strength induced
by TMS to left sPCS for all participants. See Online Methods for simulation details.
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Supplementary Figure 3 — TMS had no
effect on WM for items in ipsilesional
hemisphere. A, Memory error plotted as a
function of priority and TMS. B, Saccade
RTs plotted as in A. Error bars are SEM.
There was no effect of TMS on errors or RT
for items in the hemisphere ipsilateral to
TMS (all ps > 0.05).
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Supplementary Figure 4 — TMS
effects on working memory
performance for individual
participants.. A, Memory error plotted
as a function of priority and TMS.
Points/thick lines: means across
participants and error bars (SEM),
reproduced from Figure 3D. Thin lines:
individual participants. B, Saccade
response times, plotted as in A. Means
and SEM reproduced from Figure 3E.
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Supplementary Figure 5 — Errors for
high-priority items do not differ from errors for a
single item. Memory error as a function of memory
load (one or two items). There was no difference in
error between memory for a single item (N = 24) and
memory for the high-priority item in the no TMS
condition (N = 14) from the present study (gray;
Mean difference (load 1 – 2) = –0.087°; t(36) =
–0.714, p > 0.05). Nor was there an appreciable
difference within-participant for the subset of
participants with data at both loads (N = 6, red; Mean
difference = –0.146°; t(5) = –1.489, p > 0.05). Data
points are individual participants. Error bars are
SEM. Note that it is very rare for average memory
error to fall below 1°, suggestive of a floor on WM
precision. Load 1 data (N = 24) were compiled from
three studies: Mackey & Curtis (2017)25 (N = 9) and
two unpublished datasets (N = 17). All single-item
studies had comparable memory delays (3–5 s) and
general behavioral conditions to the present study.
For participants with data in multiple single-item
studies, errors were averaged over study before
comparison (N = 2). All data are from the right
hemifield to match the data in the TMS analysis.
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