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Key Points

● Working memory is a system composed of both storage and control processes.
● Unlike long-term memory, working memory has severe capacity limits. As the number of

items you are storing in working memory increases, the quality of the memory for those
items decreases.

● Classic studies with non-human primates support a model in which working memory is
supported by persistent neural activity in neurons in the dorsolateral prefrontal cortex.

● Human studies suggest that working memory depends on persistent activity across a
widely distributed network of brain regions.

● Sensory cortices are thought to be recruited for storage, as the visual contents of
working memory can be decoded from the patterns of activity in visual cortex.

● Even in visual cortex, working memory representations appear to be abstractions of
memoranda related to behavioral goals and demands.

● New evidence suggests that prefrontal cortex controls operations of the content of
working memory stored in sensory cortices.

Abstract

Working memory is one of the most important higher-order cognitive abilities, allowing us to hold
information that is no longer present “in mind” in preparation for future action. We summarize
three key aspects of working memory: its capacity limits, the neural basis of working memory
storage, and the control of working memory contents. We emphasize the cognitive and neural
distinctions between storage and control, as well as the evolution of the field of working memory
research from a focus on the prefrontal cortex to a broader perspective that identifies working
memory as arising from a distributed set of brain regions.



Introduction

Working memory refers to the ability to maintain and manipulate information over brief periods

of time, generally on the order of seconds (Miyake and Shah, 1999; Baddeley, 2012). The

information stored in working memory often originates from immediately preceding perceptual

experience, or it can be information retrieved from long-term memory. For example, when

reading a book, making sense of the current sentence often requires that the subject of

immediately preceding sentences be remembered. Similarly, when navigating busy city streets,

one must recall that they saw their destination across the street while it is temporarily blocked by

a bus waiting at a stop light. As these examples demonstrate, working memory abilities are

crucial in any temporally-extended task that requires information that is not available to

immediate perception, thus forming a bridge between past experience and future action

(Goldman-Rakic, 2011; Diamond, 2013; Fuster, 2015). In keeping with its prominence in

cognitive functioning, working memory is predictive of academic achievement and general

intelligence, and impairments in working memory are found in both healthy aging and

neurological and psychiatric conditions (Salthouse et al., 1991; Miyake et al., 2001; Conway et

al., 2003; Alloway, 2006; Alloway et al., 2009; Fukuda et al., 2010b; Johnson et al., 2013; Luck

and Vogel, 2013).

Functionally, working memory can be divided into components for the storage of information,

which are often thought to be domain specific (e.g., visual, verbal, etc.), and components for the

control and manipulation of information, which are often considered to be domain general

(Baddeley and Logie, 1999; Miyake et al., 2001; Li et al., 2014; Camos, 2017). Terminologically,

some researchers refer to the former as short-term memory and reserve working memory for

processes of control and manipulation of stored information (Cowan, 2017). Here, we take a

broad view of the construct of working memory that includes both storage and control

components. We will review behavioral and neural signatures of both storage and control. In
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doing so, we will argue that jointly considering both components and delineating their

interactions is crucial for progress in understanding the mechanisms and neurobiological

substrates of working memory. We will give particular focus to visual working memory for three

reasons: 1) It affords careful control of stimulus properties that form the basis of the

memoranda; 2) It permits linkages with the rich literature on the neurophysiological basis of

working memory in nonhuman primates; 3) Sophisticated computational methods and analytic

techniques exist for probing the mechanisms of visual working memory and uncovering the

nature of the representations underlying visual working memory in human subjects. That said,

the findings and principles described below should generalize to working memory content

originating from other sources.

Working memory has hallmark signatures at the behavioral and neural levels that differentiate it

from other forms of memory. First, unlike long-term memory systems, which seemingly allow for

a nearly unlimited (within our lifespans) amount of semantic, episodic, and procedural

information to be stored, working memory is severely capacity-limited, typically able to hold only

3-9 items at a time, depending on individual ability and task conditions (Miller, 1956; Cowan,

2001). Second, though long-term memory is fallible and subject to distortions and forgetting,

working memory is extremely fragile: it persists on the order of seconds, decays rapidly without

active maintenance processes, such as rehearsal, and is susceptible to distraction (Miyake and

Shah, 1999; Lorenc et al., 2021). Finally, while long-term memories are created, updated, and

maintained via synaptic changes, working memory is primarily reliant on active neural firing

(Wang, 2021). In the remainder of the chapter, we will describe three key foundations for

understanding working memory: capacity limits, storage, and control.
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Capacity limits in working memory

Unlike long-term memory, working memory has severe capacity limits. We can only store so

many items in working memory, after which our memory performance declines. While this

hallmark of working memory has long been recognized (Miller, 1956), the past few decades

have seen considerable research devoted to understanding the nature of those limits (Cowan,

2001; Fukuda et al., 2010a; Luck and Vogel, 2013; Ma et al., 2014). In visual working memory,

change-detection tasks have commonly been used to assess working memory capacity limits

(Luck and Vogel, 1997). In such tasks, participants are briefly shown an array of items on a

screen (e.g., colored squares); after a delay, the display reappears, and participants are tasked

with reporting whether an item in the display changed from the first presentation to the second

(Figure 1A). By varying the number of items in the display and examining the impact on

change-detection performance, a capacity limit in terms of the number of items that can be held

in mind can be computed. Across a number of experiments, these paradigms yield a capacity

limit of around 3–4 items (Fukuda et al., 2010a). On this basis, one class of highly influential

theoretical models proposes that working memory is structured into a limited number of discrete

slots, mirroring behavioral capacity limits; when the number of items to be stored exceeds this

capacity and an item is not held in working memory, the participant is thought to resort to

randomly guessing whether it changed (Luck and Vogel, 1997; Cowan, 2001; Awh et al., 2007;

Zhang and Luck, 2008; Rouder et al., 2011). Though exactly how slots would arise in the brain

is unclear (Fukuda et al., 2010a), a region of posterior parietal cortex (PPC) increases activity

with load up to 4 items, at which point its activity plateaus, in line with the working memory

capacity limit estimated from behavior (Todd and Marois, 2004; Xu and Chun, 2006) (Figure

1C).

Objections to the discrete slots model of working memory originated from the observation that,

as set size increases, the precision with which individual items are remembered decreases,
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even beyond 3-4 items (Palmer, 1990; Wilken and Ma, 2004a; Bays and Husain, 2008). These

observations were often made on the basis of continuous-report paradigms, which ask

participants to reproduce a stimulus value from the memory array, unlike change-detection

paradigms, which require only a binary judgment (Figure 1B). The observation of a relationship

between set size and encoding precision led to the development of an alternative theoretical

model in which working memory is subserved by a continuous resource, which is divided among

the items held in working memory (Wilken and Ma, 2004a; Bays and Husain, 2008; Ma et al.,

2014). On this account, decreases in precision with set size arise because less resource is

available to each item as it is further divided among the items, and guessing behavior occurs

not because an item failed to be held in a particular slot, but because the resource itself is noisy

and variable, such that on some trials the noise will be so high the item is essentially not

recoverable (van den Berg et al., 2012). While the model is abstract, its proponents identify the

resource as likely corresponding to noisy neural populations encoding the memorandum (van

den Berg et al., 2012; Ma et al., 2014).

Given that working memory has qualities that appear slot-like alongside qualities that appear

resource-like, a number of attempts have been made to bridge across these models, including

by allowing the individual slots to behave like noisy resources (Zhang and Luck, 2008). Other

work has demonstrated how slot-like capacity-limited behavior can arise from noisy neural

populations encoding working memory, either due to dynamics inherent in the neural population

(Wei et al., 2012; Standage and Paré, 2018) (Figure 1D), or from the manner in which

information is sampled from noisy memory representations (Schneegans et al., 2020). As such,

these models support the idea that the underlying resource is continuous. An alternative

proposal is that the capacity limits arise not from constraints on the storage of working memory

content, but from limits on the number of items that can be individuated and tracked by a

content-independent pointer system (Thyer et al., 2022); see also (Xu and Chun, 2006). A
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similar pointer system has been implemented in a biologically inspired model of prefrontal-basal

ganglia circuits (Kriete et al., 2013).

Figure 1. Evidence for capacity limits in WM. A. Left: In a typical change-detection task, subjects view a
sample array of stimuli, followed by a brief delay. After the delay, a test array appears on screen, and
subjects report whether the array is identical or whether a feature (e.g., the color of one of the squares)
has changed. Alternatively, an item at a particular location may be probed at test, rather than
redisplaying the entire array. Right: Accuracy of reporting a change decreases as the set size of the
array increases. Adapted from Figure 1 of (Luck and Vogel, 1997). B. Left: In a color
delayed-estimation task, a typical continuous-report paradigm, rather than responding as to whether an
item in the array changed after the delay, subjects are asked to reproduce the color of a probed item.
Right: Memory variability, measured as the standard deviation of the distribution of memory errors
relative to the true color, increases with increasing set size. Adapted from Figure 1 of (Wilken and Ma,
2004b). C. Left: Superior intraparietal sulcus (sIPS; green)—a subregion of the PPC—in an example
subject. Middle: Working memory capacity (k) measured using a change-detection task and averaged
across subjects. Capacity shows a plateau at about 4 items. Right: Neural activity in sIPS demonstrates
a similar plateau and correlates with behavioral capacity. Adapted from Figure 2 of (Xu and Chun,
2006). D. Simulated neural activity from excitatory units in a neural network model of working memory
presented with set sizes of 2, 3, 4, or 6 items. While the network successfully encodes up to 4 items, at
set size 6 the activity encoding each item is prone to fading away or merging (bottom right). Neurons
are labeled by their preferred stimulus, in degrees (ordinate; e.g., coding for an angle in 2D space), and
their activity is plotted across time (abscissa), where C marks the stimulus presentation epoch. Color
corresponds to firing rate. Adapted from Figure 2 of (Wei et al., 2012).
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Working memory storage

Persistent activity in prefrontal cortex as a neural substrate of working memory storage

While many researchers now consider working memory to be a cognitive function with

distributed substrates throughout the brain (D’Esposito and Postle, 2015; Christophel et al.,

2017; Sreenivasan and D’Esposito, 2019; Curtis and Sprague, 2021), the prefrontal cortex has

long retained a “preeminent role” in neurobiological accounts of working memory

(Goldman-Rakic, 1995). Appreciation for the role of prefrontal cortex in short-term memory

processes can be traced back to the studies of Jacobson (Jacobsen, 1935, 1936). When

nonhuman primates were confronted with a delayed response task in which they had to search

for food hidden in one of two possible locations after a brief delay, animals with bilateral

prefrontal lesions were at chance in identifying the baited location, displaying a selective deficit

in “immediate memory” (Jacobsen, 1935). Several decades of lesion studies building on this

work established that integrity of the lateral prefrontal cortex, and more specifically the principal

sulcus (areas 46 and 9/46d of the macaque) was necessary for performance in spatial delayed

response tasks (as reviewed in (Curtis and D’Esposito, 2004).

Subsequently, extracellular recording techniques enabled the identification of neural activity

correlated with working memory. In two pioneering studies, one using a delayed response task,

as described above (Fuster and Alexander, 1971), and another using a delayed alternation task,

in which subjects were required to alternate between pulling two levers, where a delay between

trials induces a memory requirement (Kubota and Niki, 1971), recordings from the area of the

macaque principal sulcus discovered neurons that maintained firing rates above baseline during

the delay period of the task, a phenomenon now termed persistent activity. Funahashi, Bruce,

and Goldman-Rakic (Funahashi et al., 1989) developed an oculomotor version of the delayed

response task (also known as a memory-guided saccade (MGS) task), which among other
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refinements allowed them to probe the relationship between neural activity and specific

locations in the visual field. Using this paradigm, they demonstrated that prefrontal cortex

neurons with persistent activity were stimulus selective, such that a given neuron typically only

responded to one or perhaps two nearby target positions in the contralateral hemifield (Figure

2A). Additionally, lesions of the prefrontal cortex tended to impair memory for targets in the

contralesional hemifield (Funahashi et al., 1993a) (Figure 2B).

Together, these studies established fundamental features of prefrontal cortex persistent activity

that have been replicated numerous times (as reviewed in (Riley and Constantinidis, 2016)).

Persistent activity: 1) Spans the delay, adapting in duration to delays of varying lengths (Fuster

and Alexander, 1971; Funahashi et al., 1989); 2) correlates with memory accuracy (Fuster,

1973; Funahashi et al., 1989; Wimmer et al., 2014); see (Rezayat et al., 2022) for review); and

3) Is selective for particular memoranda (Funahashi et al., 1989; Wimmer et al., 2014). These

features are consistent with a mechanism that bridges the gap between a past sensory event

and subsequent contingent behavior and align closely with cognitive notions of working memory,

such that prefrontal persistent activity was identified as the neural basis of working memory

(Goldman-Rakic, 1995).
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Figure 2. Prefrontal cortex and working memory.
A. Neural activity recorded from macaque
principal sulcus in the prefrontal cortex during a
memory-guided saccade task. An example neuron
shows persistent activity throughout the delay
when the memory target appears in the neuron’s
receptive or “memory” field (i.e., the area of space
it prefers; solid red line). When the target is
opposite the neuron’s receptive field, its activity is
suppressed (dashed red line). Adapted from
(Funahashi et al., 1989). B. Experimental lesions
to macaque principal sulcus diminish
memory-guided saccade accuracy compared to
pre-lesional performance, in the visual hemifield
contralateral to the lesion. The degree of
impairment increases with delay duration.
Adapted from (Funahashi et al., 1993a). C.
Persistent activity during a memory-guided
saccade task measured with event-related fMRI
in human subjects. Top: Statistical parametric
mapping demonstrates significantly elevated
BOLD activity in the precentral sulcus (sPCS)
(circled) and intraparietal sulcus during the
memory delay. Bottom: The average BOLD time
course from the superior precentral sulcus shows
a phasic response to the visual WM target (T) and
a phasic response at saccade onset (R); during
the delay, activity remains persistently above
baseline. Adapted from (Srimal and Curtis, 2008).

While these fundamental features of persistent activity were established in dorsolateral

prefrontal cortex during visuospatial working memory, they have been extended across frontal

areas, domains, and species. Visuospatial persistent activity is actually more common, robust,

and spatially-selective in neurons of the frontal eye fields (FEF) than dorsolateral prefrontal

cortex (Goldberg and Bruce, 1985; Funahashi et al., 1989; Sommer and Wurtz, 2001; Merrikhi

et al., 2017; Hart and Huk, 2020). Persistent activity is found in many other frontal areas

including the supplementary eye fields (SEFs) (Shichinohe et al., 2009; Fukushima et al., 2011),

orbitofrontal cortex (OFC) (Ichihara-Takeda and Funahashi, 2007), and in the dorsal premotor

cortex (pMD) (Rossi-Pool et al., 2017; Bastos et al., 2018). Outside the coding of space,

prefrontal cortex has neurons that demonstrate persistent activity during working memory tasks

for both simple (e.g., color) and complex (e.g., face) objects (Quintana et al., 1988; Wilson et al.,

https://paperpile.com/c/L2mNxo/FpDe
https://paperpile.com/c/L2mNxo/KtW2
https://paperpile.com/c/L2mNxo/B9hK
https://paperpile.com/c/L2mNxo/FpDe+sj1U+EgGu+tzeA+NRGF
https://paperpile.com/c/L2mNxo/FpDe+sj1U+EgGu+tzeA+NRGF
https://paperpile.com/c/L2mNxo/CVrW+9wlf
https://paperpile.com/c/L2mNxo/xt6k
https://paperpile.com/c/L2mNxo/82Rz+aYFV
https://paperpile.com/c/L2mNxo/O1Ue+5Z0X+qlAL+QGO1+WfvB+1XH7+GptD+0JH6+sg6x+OVeT+FinU+JO1p+dxHs+WV9d+sNiZ+ryPg


1993; Miller et al., 1996a; Rao et al., 1997; Hoshi et al., 1998; Scalaidhe et al., 1999; Fuster et

al., 2000; Rainer and Miller, 2000; Constantinidis et al., 2001a; Freedman et al., 2001;

Sakagami et al., 2001; Averbeck et al., 2003; Inoue and Mikami, 2006; Genovesio et al., 2009;

Roy et al., 2014; Panichello and Buschman, 2021) and the direction of dot motion (Zaksas and

Pasternak, 2006; Mendoza-Halliday et al., 2014). Nor are these findings restricted to the visual

domain: there are prefrontal cortex neurons that are selective for vibrotactile frequency (Romo

et al., 1999), sound location (Fuster et al., 2000; Kikuchi-Yorioka and Sawaguchi, 2000), and

audiovisual macaque vocalizations (Hwang and Romanski, 2015). Furthermore, encoding is

present not only for retrospective information (i.e., goal-relevant stimuli), but also for prospective

motor plans (Funahashi et al., 1993b; Takeda and Funahashi, 2002; Markowitz et al., 2015) and

prospective sensory features of delayed paired associates (Rainer et al., 1999; Fuster et al.,

2000). In summary, persistent neural activity during delays is thought to carry any information

stored in working memory that is useful for memory-guided behavior.

The prominence of persistent activity in prefrontal cortical neurons led Goldman-Rakic to

propose that the prefrontal cortex is the principal site of working memory storage

(Goldman-Rakic, 1995, 2011), a theory that continues to be highly influential (Riley and

Constantinidis, 2016). Nonetheless, persistent activity during working memory has now been

identified in every lobe of the brain, as well as in subcortical structures (Leavitt et al., 2017;

Sreenivasan and D’Esposito, 2019). Within parietal cortex, neurons in areas LIP and 7a also

show spatially selective and robust persistent activity (Gnadt and Andersen, 1988; Barash et al.,

1991; Constantinidis and Steinmetz, 1996; Chafee and Goldman-Rakic, 1998; Pesaran et al.,

2002; Hart and Huk, 2020). In the temporal lobe, persistent activity is found in monkey

inferotemporal (IT) cortex (Fuster and Jervey, 1981; Miyashita and Chang, 1988; Miller et al.,

1993a; Chelazzi et al., 1998). Activity also persists in the medial temporal lobe (Miller and

Desimone, 1994; Suzuki et al., 1997; Wirth et al., 2003) and in subcortical areas, including the
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mediodorsal thalamus (Fuster and Alexander, 1971; Funahashi, 2013), and superior colliculus

(SC) (Shen et al., 2011; Dash et al., 2015; Sadeh et al., 2018). Therefore, and to preview the

evidence for persistent activity in humans described next, one challenge for future research is to

understand the significance of such widespread and distributed working memory signals.

Persistent activity measured in humans

Using functional magnetic resonance imaging (fMRI), persistent activity has been measured in

humans. Mirroring studies in the macaque, elevated BOLD activity in prefrontal cortex during

the delay period of working memory tasks is present for visuospatial (Courtney et al., 1998;

Zarahn et al., 1999; Leung et al., 2002; Sakai et al., 2002; Curtis et al., 2004; Curtis and

D’Esposito, 2006; Srimal and Curtis, 2008) (Figure 2C), verbal (Barch et al., 1997; Cohen et al.,

1997; Narayanan et al., 2005), auditory (Tark and Curtis, 2009; Kumar et al., 2016; Uluç et al.,

2018), and vibrotactile (Preuschhof et al., 2006; Schmidt et al., 2017) memoranda. Beyond

prefrontal cortex, persistent activity is found in human posterior parietal cortex (Todd and

Marois, 2004; Xu and Chun, 2006; Xu, 2018) and the temporal lobe (Ranganath et al., 2004;

Lepsien and Nobre, 2007), including in single neurons of the medial temporal lobe, as

measured with invasive recordings in epilepsy patients (Kamiński et al., 2017; Kornblith et al.,

2017; Boran et al., 2022). Persistent activity is also found in subcortical areas, including the

caudate nucleus (Postle and D’Esposito, 1999), the lateral geniculate nucleus (LGN) (Rahmati

et al., 2023), and the SC (Rahmati et al., 2020). Furthermore, the magnitude of persistent

activity spans delays of varying lengths (Srimal and Curtis, 2008) and correlates with behavioral

performance (Pessoa et al., 2002; Sakai et al., 2002; Curtis et al., 2004).
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Figure 3. Identifying working memory regions in human cortex. A. Persistent activity across brain areas
identified in B., measured with fMRI. BOLD activity persists during the delay of an MGS task in many
areas. Solid lines are average BOLD activity when the memory target was within the pRF of the voxels.
Dashed lines are when the memory target was 180 degrees away from the pRFs. Error bands are
standard errors of the mean (SEM). Gray vertical lines mark the onset of the visual target and the end
of the delay. Adapted from (Hallenbeck et al., 2021a). B. Population receptive field map of
retinotopically-organized regions of visual, parietal, and frontal cortex in an example human subject’s
right hemisphere. Color indicates an area's preferred polar angle in the contralateral visual field (i.e.,
segment of visual space, see legend). Each labeled area has its own field map of contralateral visual
space. Adapted from (Mackey et al., 2017). C. Lesions to human sPCS and IPS impair working
memory. Dorsolateral prefrontal cortex (dlPFC) lesions that spared sPCS had no effect on memory.
Left: Lesion sites in example patients. Right: Average memory error (SEM) on an MGS task for targets
in the contralesional visual field, as a function of lesion site. Adapted from (Mackey et al., 2016a,
2016b). D. TMS to sPCS and IPS, but not dlPFC, impairs working memory, replicating the lesion
results. Left: MGS task. TMS was administered during the delay period. Middle: Stimulation targets
from the brain of an example subject. Right: MGS performance, as in C.

Beyond persistent activity in prefrontal cortex: Evidence from early visual cortex

Beyond IT, a high-level visual region, whether persistent activity exists in sensory regions

generally—particularly lower-level sensory regions—has proven controversial, with inconsistent

findings across studies in visual, auditory, and somatosensory areas (Leavitt et al., 2017).
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Focusing on visual cortex, while evidence of persistent activity is found less often than in

higher-order regions (Leavitt et al., 2017), some studies have identified persistent activity even

in V1, the earliest cortical visual area (Fuster, 1990; Supèr et al., 2001; Van Kerkoerle et al.,

2017; Dotson et al., 2018). There are a number of possible reasons for discrepancies in the

presence of persistent activity between studies.

First, the presence or absence of persistent activity may depend on the nature of the

memorandum. One study found a lack of persistent activity for the memorized direction of

random dot motion in motion-selective visual area MT, while persistent activity was found in later

visual area MST and in lateral prefrontal cortex, leading the authors to conclude that persistent

activity only emerges later in the cortical hierarchy (Mendoza-Halliday et al., 2014). However,

whether or not activity persists in an area may depend on the format of the memorandum, which

could differ from the format of the perceptual representation. In the case of dot motion, it seems

unlikely that memory consists of a replay of hundreds of moving dots; perhaps instead the

percept is compressed or recoded into something like a directional vector, which does not drive

MT because it does not contain active motion.

Second, delay-period activity in early visual areas, even when stimulus selective, is sometimes

found to be below the pretrial baseline (Supèr et al., 2001; Bisley et al., 2004). Some have

dismissed these results as a lack of persistent activity because they do not resemble canonical

delay-period activity established in dorsolateral prefrontal cortex (Riley and Constantinidis,

2016). However, given the different cortical architectures in dorsolateral prefrontal cortex and

visual cortex and likely different roles of these regions in working memory, it should not be

surprising that the nature of their delay-period activity can differ.

Finally, delay-active neurons may be relatively less numerous and more topographically isolated

in sensory areas. Using large-scale recordings, a recent study was able to find persistently
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active neurons in macaque V1 and V2, but the relative proportion of these neurons participating

in delay-period activity tended to decrease over the delay, such that there was a much lower

incidence of delay-active neurons in V1 and V2 in the late delay period compared to higher

areas (Dotson et al., 2018). Similarly, another study found persistent activity in V1, but only in

superficial and deep layers of cortex, suggesting the increases in multi-unit activity are due to

top-down signals (Van Kerkoerle et al., 2017).

Findings from human fMRI support the premise that in earlier visual areas, delay-period activity

may be both below baseline and more topographically specific than in higher areas. Analyses

that average over all the voxels in an area fail to find persistent activity in early visual cortex

(Ester et al., 2009; Harrison and Tong, 2009; Offen et al., 2009; Serences et al., 2009; Riggall

and Postle, 2012; Albers et al., 2013). However, this approach is rather crude, especially

compared to the standard approach in nonhuman primate electrophysiology, which involves 1)

characterizing each neuron’s receptive field (RF), or preferred stimulus feature during

perception (e.g., area of the visual field); and 2) contrasting delay-period activity for stimuli

placed inside and outside of each neuron’s RF (e.g., comparing preferred to non-preferred or

anti-preferred stimuli). The development of population receptive field (pRF) mapping (Dumoulin

and Wandell, 2008; Wandell and Winawer, 2015; Mackey et al., 2017) has enabled researchers

to contrast in-RF and out-RF responses at the voxel level as well. This technique can be used to

characterize the part of the visual field preferred by an MRI voxel, representing the location in

visual space that—when a stimulus is present—is most dominant in driving the activity of the

underlying population of tens of thousands of neurons sampled by the voxel.

Utilizing this technique, Hallenbeck et al. (Hallenbeck et al., 2021a) found that delay-period

activity in V1 was higher for in-RF compared to out-RF voxels, though activity tended to be

below baseline overall during the late-delay period (Figure 3A&B). These results closely mirror

those of Supèr et al. (Supèr et al., 2001) in macaque V1, who also found that activity during the
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delay dipped below baseline but was higher for in-RF stimuli. Interestingly, two gradients can be

seen in the fMRI data, moving in opposite directions along the visual hierarchy. First, the overall

amplitude of persistent activity increases moving up the hierarchy from visual to frontal cortex.

Second, the spatial selectivity—captured by the difference between in-RF and out-RF

voxels—generally increases going down the hierarchy from frontal to visual cortex. This pattern

lends further support to the idea that stimulus-selective delay activity in visual regions may not

be absent but rather different in character than in prefrontal and parietal areas.

Furthermore, recently developed techniques based on pRF mapping or inverted encoding

models (Brouwer and Heeger, 2009; Serences and Saproo, 2012) of fMRI data have allowed

researchers to create visual reconstructions of the contents of working memory in the same

feature domain as the stimulus (e.g., orientation or polar angle in visual space). These methods

consistently reveal activity corresponding to the memorized feature in visual cortex, as well as in

prefrontal and parietal cortices (Kok and de Lange, 2014; Hallenbeck et al., 2021a; Kwak and

Curtis, 2022; Li and Curtis, 2023). Because these methods rely on relative differences in activity

among voxels sensitive to different stimuli (e.g., different regions of visual space), they can

ultimately be thought of as more sensitive measures of stimulus-selective persistent activity

(Curtis and Sprague, 2021).

In sum, the most widely agreed upon mechanism underlying working memory

—memoranda-specific persistent activity—is not exclusive to prefrontal cortex. Rather it appears

in many parts of the brain. The ubiquity of persistent activity raises important questions that

continue to vex researchers about the relative roles of each region in supporting working

memory, as well as the nature of interactions between regions.

Questions regarding the role of persistent activity in prefrontal cortex
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One of these crucial questions is: If persistent activity is found all over the brain, does that imply

that all of these regions play a role in working memory storage, or can persistent activity serve

different purposes depending on where it is found? Work in cognitive psychology has long

suggested that working memory requires both storage functions and processes that act over

stored representations. Notably, Baddley’s seminal psychological model of working memory

(Baddeley and Hitch, 1974; Baddeley and Logie, 1999) established a distinction between

domain-specific storage buffers that hold the contents of working memory (the phonological loop

for verbal information and the visuospatial sketchpad for visual information), and a central

executive responsible controlling and coordinating the operations of working memory, including

allocating limited-capacity attentional resources, filtering distracting or irrelevant stimuli that

could interfere with existing memoranda, and updating the contents of working memory based

on task goals. Well prior to many of the findings of widespread persistent activity outlined above,

the identification of lateral prefrontal cortex with storage, as opposed to the processing

requirements of working memory, was called into question.

First, lateral prefrontal cortex lesions do not always impair working memory (Curtis and

D’Esposito, 2004). Notably, Malmo (Malmo, 1942) found that macaques with bilateral resection

of the frontal lobes were able to perform a delayed response task if conducted in darkness,

which implied that the frontal lobes are not involved in the storage of working memory but rather

in protecting the contents of working memory from interference by distracting stimuli during the

delay period. Second, when researchers began trying to translate findings regarding the role of

dorsolateral prefrontal cortex in spatial working memory from nonhuman primates to human

neuroimaging, they encountered a serious discrepancy. Several imaging studies failed to find

spatial-working-memory-related delay-period activity in the presumed homologous part of

human dorsolateral prefrontal cortex (Jonides et al., 1993; Smith et al., 1996; Courtney et al.,

1998; Zarahn et al., 1999; Rowe et al., 2000). This failure does not appear to be caused by a
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lack of sensitivity to detect persistent activity associated with working memory for a single item

using fMRI, as subsequent work demonstrated persistent activity in the superior precentral

sulcus (sPCS) in the frontal cortex and the posterior part of the intraparietal sulcus (IPS) during

an MGS task (Curtis et al., 2004; Curtis and D’Esposito, 2006; Schluppeck et al., 2006; Srimal

and Curtis, 2008; Tark and Curtis, 2009; Jerde et al., 2012; Sprague et al., 2014; Saber et al.,

2015; Rahmati et al., 2020; Hallenbeck et al., 2021a). Further ruling out a limitation of fMRI,

memory-guided saccade accuracy was spared by dorsolateral prefrontal cortex lesions,

whereas sPCS and IPS lesions increased memory errors to targets in the contralesional

hemifield (Mackey et al., 2016a, 2016b; see also Ploner et al., 1999) (Figure 3C). Ruling out

factors such as cortical reorganization or compensation, transcranial magnetic stimulation

(TMS) applied to sPCS, IPS, and the dorsolateral prefrontal cortex of healthy subjects during

the delay period recapitulated the lesion findings: TMS to the sPCS, but not dorsolateral

prefrontal cortex, caused an increase in memory-guided saccade errors (MacKey and Curtis,

2017) (Figure 3D).

Additional findings from fMRI suggest that dorsolateral prefrontal cortex is activated by task

demands outside a pure requirement for storage (e.g., D’Esposito et al., 1999; Rowe et al.,

2000; Sakai et al., 2002). One might think that an area involved in storage would be sensitive to

load, or the number of items required to be held in mind. However, dorsolateral prefrontal cortex

appears insensitive to load unless storage demands increase beyond the capacity limit of

working memory, a pattern of results that is more consistent with a role in the strategic

organization and compression of memoranda (e.g., chunking), rather than storage (Rypma et

al., 2002; Bor et al., 2003; Curtis and D’Esposito, 2003). Other evidence indicates that

dorsolateral prefrontal cortex activity is sensitive not to storage requirements but to the need to

select among competing responses or representations (Passingham, 1985; Rowe et al., 2000;

Rowe and Passingham, 2001). Indeed, dorsolateral prefrontal cortex is sensitive to selection
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demands even in the absence of working memory requirements (Schumacher and D’Esposito,

2002; Schumacher et al., 2003), suggesting that it subserves rule-based response selection, not

working memory storage per se. These and related findings have led to a variety of proposals

that the primary role of lateral prefrontal cortex is not working memory storage but executive or

cognitive control operations, which allow for the selection and filtering of mental representations

and the planning and execution of behavior in service of task goals, particularly in the face of

conflict or distraction (Petrides, 2000; Shimamura, 2000; Miller and Cohen, 2001; Chrysikou et

al., 2014; Fuster, 2015). Furthermore, these findings argue against the basic premise that

delay-period persistent activity should be associated primarily with storage, not only in prefrontal

cortex but anywhere in the brain (Curtis and D’Esposito, 2003). This raises two questions: 1)

Where might the primary site(s) of working memory storage reside, if not prefrontal cortex? 2)

Besides persistent activity, what criteria can we use to identify these sites and differentiate

storage from other processes?

The sensory recruitment hypothesis for working memory storage

While the preceding evidence is suggestive of regions that may be involved in working memory

storage, including sPCS and PPC, one of the most prominent current hypotheses is that

working memory storage is subserved by sensory cortex. This sensory-recruitment hypothesis is

not a specific, mechanistic proposal, but rather a general framework positing that the neural

mechanisms that subserve sensory and perceptual processing are used for working memory.

Moreover, it also assumes that the role of prefrontal cortex is to exert top-down control over the

representations held in sensory areas (Curtis and D’Esposito, 2003; Pasternak and Greenlee,

2005; Postle, 2006; D’Esposito, 2007; D’Esposito and Postle, 2015; Serences, 2016).

The genesis of this hypothesis stemmed in part from many of the observations described above,

including a lack of delay-period activity in dorsolateral prefrontal cortex during simple
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memory-maintenance tasks measured with fMRI, combined with the discovery that information

about what one has stored in working memory exists in sensory cortex. A methodological

breakthrough occurred around the turn of the millennium, when neuroimaging researchers

began to analyze multivariate patterns of activation across voxels in a region as a means of

discriminating between different stimuli or conditions. Using simple machine learning classifiers,

they found that the contents of perception could be decoded based on the different patterns that

were evoked by different stimuli, so-called multi-voxel pattern analysis (MVPA; (Haxby et al.,

2001; Norman et al., 2006). This advance represented an important increase in sensitivity over

traditional mass univariate approaches to analyzing fMRI data, which can only distinguish

elevated or suppressed average activation between conditions. Such an increase in sensitivity

to fine-grained patterns of activation may be particularly important for examining working

memory phenomena in early sensory areas, where it might be expected that only certain small

subpopulations of neurons tuned to the memorandum (e.g., a specific visual orientation) would

be active during the delay (Serences et al., 2009; Curtis and Sprague, 2021). Indeed, in two

seminal papers, multivariate classifiers were trained on fMRI activation patterns measured from

visual cortex during the delay period of working memory tasks (Harrison and Tong, 2009;

Serences et al., 2009). These studies demonstrated that the memorandum could be

successfully decoded from delay-period activation patterns. As an important control, they

showed that visual information that was presented in the same trial but was not cued to be

remembered [either another stimulus (Harrison and Tong, 2009) or another feature of the same

stimulus (Serences et al., 2009)] was not maintained, ruling out any confound from lingering

sensory-evoked activation that might persist in the slow hemodynamic signals measured with

fMRI (Figure 4A&B).
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Figure 4. Decoding working memory in early visual cortex and beyond. A. Left: Participants were
asked to remember the orientation or the color of a sample stimulus over a delay in separate blocks.
Right: The task relevant, but not irrelevant, feature was decodable from the pattern of BOLD activity in
V1, suggesting that behavioral goals impact the stimulus features maintained in V1 during the delay.
Adapted from (Serences et al., 2009). B. Left: Using a retro-cue design, participants maintained the
cued grating in working memory over a delay. Right: Using pattern classification of voxel BOLD activity
in V1, the orientation in working memory could be decoded (black bar), but not as accurately as during
a perceptual task (white bar). When training on one task and testing on the other, classification dropped
(gray bar) suggesting differences in the format of perceptual and working memory representations.
Adapted from (Harrison and Tong, 2009). C. ‘Inverted encoding models’ (IEM; (Brouwer and Heeger,
2009) model the activation of each voxel as a weighted combination of neural information channels
mapping a feature space, here angular visual space. Shown are average reconstructed channel
response profiles for each timepoint across memory-guided saccade trials (i.e., the activation of polar
angle representations inferred from voxel activations), for several visual field maps. Targets are aligned
at 0°, and the bottom inset is the average channel response profile over the final 1.5 s of the delay
(blue line). Data adapted from (Hallenbeck et al., 2021b). D. Using a generative model to estimate
working memory representations (van Bergen & Jehee; 2021), one can decode precise memory
content, here from an example participant. For each visual field map, the decoded location as a
function of the memorized target location is plotted, where each dot is a trial. Notice how closely the
points lie along the diagonal, as well as the decrease in decoded accuracy as one moves up the visual
hierarchy. Adapted from (Li et al., 2021a).

Subsequently, dozens of studies using a variety of decoding and encoding methods have found

that the patterns of activity in visual, parietal, and frontal cortex contain information about visual

features held in working memory (Jerde et al., 2012; Riggall and Postle, 2012; Albers et al.,
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2013; Emrich et al., 2013; Ester et al., 2013, 2015; Lee et al., 2013; Xing et al., 2013; Sprague

et al., 2014, 2016; van Bergen et al., 2015; Bettencourt and Xu, 2016; Yu and Shim, 2017;

Christophel et al., 2018a, 2018b; Lorenc et al., 2018; Rahmati et al., 2018, 2020; Rademaker et

al., 2019; Brissenden et al., 2021; Hallenbeck et al., 2021a; Li et al., 2021b; van Bergen and

Jehee, 2021; Miller et al., 2022; Master et al., 2023); see (Christophel et al., 2017) for review)

(Figure 4C&D). Stimulus-selective patterns during working memory have also been found in

subcortical structures, including the SC (Rahmati et al., 2020), LGN (Rahmati et al., 2023), and

cerebellum (Brissenden et al., 2021). These methods have also successfully identified working

memory contents in other modalities, including auditory (Linke et al., 2011; Kumar et al., 2016;

Uluç et al., 2018; Czoschke et al., 2021; Deutsch et al., 2023) and vibrotactile (Schmidt et al.,

2017).

In support of the sensory recruitment hypothesis, the quality of working memory representations

in early visual areas predicts behavioral performance (Emrich et al., 2013; Ester et al., 2013;

Bettencourt and Xu, 2016; Hallenbeck et al., 2021a; Li et al., 2021b). While quality also predicts

performance in parietal and frontal areas (Bettencourt and Xu, 2016; Li et al., 2021b), an

interesting pattern emerges when the cortical topography of sustained delay-period activation is

contrasted with stimulus-selective activation patterns: regions with elevated delay-period activity

in frontal and parietal cortices tend to have robust persistent activity but weak or absent

decoding, while visual regions tend to show weak or absent persistent activity but robust

decoding (Riggall and Postle, 2012; Emrich et al., 2013; Hallenbeck et al., 2021a; Li et al.,

2021b) (Compare Figures 3A and 4D). These counter-gradients of delay-period activity and

decodability have been taken as further evidence that frontal and parietal regions serve to

control or coordinate working memory representations, whereas sensory regions encode the

representations themselves (D’Esposito and Postle, 2015; Curtis and Sprague, 2021) .

Evaluating arguments for regional specialization for working memory storage
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We now turn to the second question raised above: Besides the mere existence of persistent

activity, what criteria can we use to identify a region as having a role in working memory storage

(or other working memory processes)? Here we will survey and evaluate the primary arguments

related to this question that are present in the working memory literature. Arguments can be

divided into two main classes: arguments from architecture, which infer regional involvement in

working memory from neural architecture, and arguments from function, which infer involvement

in working memory from known functional specializations of each region (e.g., their coding

properties) or from appeals to functional organizations that would lead to putatively more

efficient or robust neural processing.

Neural architecture: the canonical microcircuit model of working memory

Given that stimulus-selective persistent activity is the primary neural signature of working

memory, it is important to identify what features of cortical microarchitecture support this activity.

Efforts to do so started in prefrontal cortex with a number of complementary observations. In

layer III of the prefrontal cortex, pyramidal (excitatory) neurons synapse onto clusters of other

layer III pyramidal neurons at regular intervals (Levitt et al., 1993; Lund et al., 1993; Kritzer and

Goldman‐Rakic, 1995). This architecture is reminiscent of V1, where a motif of patchy

horizontal connectivity (Gilbert and Wiesel, 1983) links neurons that tend to have similar

orientation tuning (Gilbert and Wiesel, 1989). By analogy with V1, Goldman-Rakic proposed that

pyramidal neurons in layer III of the prefrontal cortex have excitatory recurrent connectivity with

other similarly-tuned neurons, which enables stimulus-selective persistent activity via recurrent

excitation, while inhibitory interneurons further sculpt this activity by suppressing excitatory units

with dissimilar tuning to those coding for the memorandum (Goldman-Rakic, 1995).

Goldman-Rakic’s theory was successfully translated into a computational model, demonstrating

that memory-selective persistent activity can in fact be generated via excitatory recurrent

dynamics balanced and sculpted by inhibition (Compte et al., 2000; Wang, 2001). The model
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further suggested that the slow kinetics of excitatory NMDA receptors, compared to the faster

kinetics of AMPA receptors (Wang, 1999), were necessary for activity to persist.

Empirical evidence largely supports this prefrontal cortex microcircuit model. Persistent activity

of similarly-tuned prefrontal cortex neurons are correlated (Constantinidis et al., 2001b), their

activity is sculpted by lateral inhibition (Rao et al., 2000; Constantinidis and Goldman-Rakic,

2002), and excitatory persistent activity depends on NMDA receptors (Wang et al., 2013).

Furthermore, the model predicts that random drift in the “bump” of activity encoding the

memorandum is the cause of memory errors (Compte et al., 2000), which is supported by the

fact that directional biases (e.g., clockwise or counterclockwise) in the identity of the

memorandum decoded from macaque prefrontal cortex correlate with memory errors in

behavior (Wimmer et al., 2014).

Differences in cortical architecture between prefrontal cortex and visual cortex have led some to

argue that V1 is not well-suited to support persistent activity (Wang, 2001, 2020; Riley and

Constantinidis, 2016; Leavitt et al., 2017). While V1 shares some architectural similarities with

prefrontal cortex that inspired the canonical model, there are several properties that likely

constrain its ability to support persistent activity. NMDA receptors are less densely expressed in

V1 compared to prefrontal cortex (Wang et al., 2008). Pyramidal neurons in prefrontal cortex

have more extensive horizontal connectivity in Layers II and III (Kritzer and Goldman‐Rakic,

1995) and are twice as likely to form reciprocal connections (Wang et al., 2006) compared to

those in visual cortex. Changes in the relative proportions of different types of inhibitory

interneurons from visual to frontal cortex may also lead to greater ability of prefrontal cortex to

support persistent activity (Torres-Gomez et al., 2020). Functionally, the timescale of intrinsic

neural activity slows from visual to frontal cortex (Murray et al., 2014). Computational models

suggest that the faster timescales in visual cortex would limit persistent activity (Wang, 2001;

Mejías and Wang, 2022), while the architecture of prefrontal cortex particularly lends itself to the
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slow recurrent dynamics necessary to support working memory. While these gradients in the

putative ability to support persistent activity match the gradient of persistent activity we find in

fMRI, the counter-gradient of stronger decoding of working memory content in visual cortex

indicates that information likely persists there in some form.

Neural architecture: top-down feedback and differentiating storage from maintenance

Working memory activity observed in sensory cortex likely reflects top-down feedback. Both

laminar recording in macaque V1 (Van Kerkoerle et al., 2017) and fMRI measurements of

human V1 (Lawrence et al., 2018) demonstrate that persistent activity is largely confined to

superficial and deep layers of cortex, where top-down inputs terminate. Local-field potentials in

sensory areas, which are thought to largely reflect synaptic inputs to a region, can be elevated

and selective for the contents of working memory even in the absence of evidence for persistent

activity (Mendoza-Halliday et al., 2014; Bahmani et al., 2018). Furthermore, TMS and lesions to

human lateral prefrontal cortex disrupt response selectivity in visual cortex in both perception

(Miller et al., 2011) and working memory (Lee and D’Esposito, 2012), and activity levels in

prefrontal and parietal cortices predict the fidelity of decoded information in visual cortex during

both working (Master et al., 2023) and long-term memory (St-Laurent et al., 2015).

While the role of top-down feedback in sensory cortices during working memory is widely

acknowledged, there is substantial disagreement over how to interpret these empirical

observations. Some view feedback in sensory cortices as evidence that prefrontal or parietal

areas must be the site of working memory storage, whereas working memory signals in sensory

regions may or may not have a functional role separate from storage (Riley and Constantinidis,

2016; Leavitt et al., 2017; Xu, 2017, 2020). The logic here is that sensory cortex inherits its

working memory information from association cortex; therefore, sensory cortex is unnecessary

for working memory storage. However, this view fails to appreciate the distinction between
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storage and maintenance that is made by proponents of sensory recruitment (Curtis and

D’Esposito, 2003). As noted above, feedback from prefrontal cortex may be particularly

important for the maintenance of working memory by protecting it from noise or distraction, but

this does not mean the prefrontal cortex is the primary site in which working memory

representations are stored. Indeed, computational modeling suggests that nonspecific

modulation of neural gain, such as that caused by neuromodulatory input or top-down attention,

(Niyogi and Wong-Lin, 2013) or reciprocal connectivity between regions (Mejías and Wang,

2022) can enable persistent activity in neural circuits that cannot independently support

persistent activity. This suggests that, in principle, prefrontal cortex need not store working

memory representations to enable working memory maintenance.

Taken together, arguments from neural architecture are most convincing when implemented in

computational models (Teng and Postle, 2021), as demonstrated by the canonical model of

working memory. Such models allow bridging between levels of analysis, from neurobiology to

circuits to behavior. They force researchers to make their theories concrete, and ideally they

generate specific, testable hypotheses. They also reduce the need for intuition, which can go

astray when attempting to reason about complex dynamical systems such as the brain.

Integrating working memory and sensory processing for efficiency

Some argue that utilizing sensory cortex for working memory is sensible from the standpoint of

efficient use of neural resources. For example, there could be costs (e.g., metabolic) to having

separate sites of perception and working memory with similar coding properties (Postle, 2006;

Sreenivasan et al., 2014). Situating working memory in sensory cortex also may allow for rapid

comparisons between the contents of working memory and perception, potentially facilitating

behavioral performance (Pasternak and Greenlee, 2005; Sugase-Miyamoto et al., 2008;

Woloszyn and Sheinberg, 2009; Rademaker et al., 2019). Indeed, cells in IT cortex show
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selective response patterns to stimuli that match the contents of working memory (Miller et al.,

1996a; Sugase-Miyamoto et al., 2008; Woloszyn and Sheinberg, 2009). Note, however, that this

view does not require a commitment to sensory cortex being the site of working memory storage

(Xu, 2020), and such comparison processes could be accomplished through alternative

mnemonic mechanisms to persistent activity, such as those involving short-term synaptic

plasticity or modulation of subthreshold synaptic currents (Sugase-Miyamoto et al., 2008;

Rademaker et al., 2019; Comeaux et al., 2023).

Neural coding and the integration or segregation of function

Storage of working memory in sensory cortex may also improve the fidelity of working memory

representations (Sreenivasan et al., 2014; Christophel et al., 2017). For example, it is not clear

that the neural tuning in prefrontal cortex is sufficient to support fine-grained memoranda

(Zaksas and Pasternak, 2006). However, the relationship between the tuning precision of

individual neurons and the fidelity of the representation is likely to be complex. For example,

theoretical analysis suggests that for a commonly used linear readout of population activity, the

amount of information that can be extracted is a nonlinear function of the tuning width and

signal-to-noise characteristics of the individual units (Seung and Sompolinsky, 1993). Therefore,

differences in tuning precision across regions may only serve as a rough guide, with detailed

computational analyses necessary to determine the relative coding fidelity of each region.

Furthermore, population tuning in visual cortex is wider in working memory than in perception,

suggesting that working memory does not take full advantage of the coding capacity of visual

cortex (Li and Curtis, 2023).

A separate set of arguments make inferences about a region’s role in working memory storage

based on its other functions. Some argue that because sensory cortex serves perception, it

could not simultaneously maintain working memory without interference (Xu, 2017). On the
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other hand, because prefrontal cortex neurons generally show selectivity for various task

features, including abstract rules, rather than strictly memoranda derived from perception, one

could argue that its role is unlikely to be primarily for storage (Sreenivasan and D’Esposito,

2019). These arguments presuppose that a neural area can only process one thing at a time.

However, there is increasing evidence that neural areas, including sensory areas, can multiplex

information, either in different subspaces of neural activity (Semedo et al., 2019, 2022; Hajnal et

al., 2023) or across different lamina or frequency bands (Bastos et al., 2018, 2020). Therefore,

arguments that merely invoke the fact that a region primarily does one function do not bear on

whether it could also (simultaneously) perform another function. The converse is also true:

frontal and parietal cortices show sensory activity during perception, but we would not discount

the role of sensory cortex in perception; neither should the reverse position be taken for the role

of sensory cortex in working memory (Scimeca et al., 2018).

Separating working memory and sensory processing for robustness: the case study of

distraction

More compelling arguments for the potential need to segregate perception and working memory

come from studies of the effect of distracting stimuli on signatures of working memory in

different regions of the brain. The logic here is that if a region is involved in working memory

storage, it needs to have some level of robustness in the face of intervening inputs, or else the

memorandum would be corrupted or lost. Indeed, studies of distractor resistance have been

some of the most challenging to the sensory recruitment hypothesis. Intervening distractors

disrupt the selectivity of delay-period activity in macaque IT (Miller et al., 1993b, 1996b) and

PPC (di Pellegrino and Wise, 1993; Constantinidis and Steinmetz, 1996; Qi et al., 2010; Suzuki

and Gottlieb, 2013), while prefrontal cortex delay activity appears resistant to distraction. These

are some of the most widely cited results in support of the idea that prefrontal cortex, rather than

sensory cortex, is critical for working memory storage. Evidence from human fMRI has been
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mixed, with some reporting that memoranda in visual cortex are disrupted by intervening

irrelevant distractors and others reporting decoding of both the memory target and the distractor

(Bettencourt and Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019; Hallenbeck et al.,

2021a; Iamshchinina et al., 2021). A number of factors could contribute to these mixed results,

including differences in statistical power and decoding methods used (Iamshchinina et al.,

2021), and differences in the effects of distractors on behavior between studies. Nevertheless,

because memoranda cannot always be decoded from visual cortex during distraction, its role in

working memory storage has been questioned (Xu, 2017, 2020).

However, the requirement for robustness cannot ignore the fact that distracting stimuli bias

working memory behavior (Magnussen et al., 1991; Magnussen and Greenlee, 1992; Smyth

and Scholey, 1994; Smyth, 1996; Rademaker et al., 2015), and conversely that working memory

contents can impact both perception and visuomotor selection (Gayet et al., 2013; Hollingworth

et al., 2013), suggesting tight links between working memory and perceptual processing.

Importantly, in fMRI studies in which distractors bias behavior, reconstructions from visual cortex

show similar bias (Lorenc et al., 2018; Hallenbeck et al., 2021a), with a recent study

demonstrating that biases in memory errors induced by distractors are predicted by trial-by-trial

errors in the working memory representations in early visual cortex, but not association cortex

(Hallenbeck et al., 2021a). Together, these findings provide strong evidence for a role of visual

cortex in working memory storage.

As the case of distraction demonstrates, strong evidence for the role of a brain region in working

memory storage is provided if representations reconstructed from this region predict behavioral

performance. Such evidence is made even stronger if neural activity predicts behavior on a

trial-by-trial basis within-subject, and stronger still if a region differentially predicts behavior

relative to other areas. While such brain-behavior correlations could always in principle be
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driven by other areas, finding differential relationships supplies important evidence in favor of

region-specific hypotheses (Xu, 2020).

The format and dynamics of working memory

We have already argued against the idea that perceptual and working memory representations

necessarily interfere with each other, given the ability of brain regions to multiplex information.

However, ideas of this nature have an underlying assumption that bears examination: namely,

that working memory representations have a similar format as perceptual representations (Xu,

2017). While some early efforts to find evidence for sensory recruitment made this explicit

assumption (Serences et al., 2009), the idea that the contents of working memory are different

from perception has a long history. For example, when tasked to remember letters from a known

alphabet, we do not store the visual form of the letters, but rather transform the letters into

phonological or sound-based codes (Conrad and Hull, 1964). Such codes effectively compress

the information that needs to be recalled, allowing us to recall more letters. Thus,

transformations of working memory may serve two purposes: protecting it from perceptual

interference, and compressing it into a format that maximizes working memory capacity and

supports behavioral goals.
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Figure 5. Format of working memory representations in visual cortex. A. We predicted that distinct
visual stimuli—the orientation of a grating or the direction of dot motion—would be re-coded into a
line-like format during working memory maintenance (left). Indeed, classifiers trained to decode one
stimulus (e.g., orientation) could be used to predict the other stimulus (e.g., motion direction) based on
the patterns of activity during the memory delay (red bar), but not during perception (gray bar). For
comparison, the average within-stimulus (e.g., test and train on gratings) decoding results are shown
(blue bar). We visualized our hypothesis that a line-like representation was being stored by projecting
voxel activity in V1 from cortical space to visual space using the receptive field parameters of the
voxels, estimated in a separate pRF mapping experiment (right). Adapted from (Kwak and Curtis,
2022). B. During an MGS task, participants maintained the location of a target in working memory over
a 12 second delay period, then generated a saccade to the stored location. Each TR of BOLD data
from the delay is projected onto the screen coordinates of visual space using the estimated receptive
field parameters from pRF mapping. Data from all trials are rotated such that the targets are all to the
right. Note how over time activity builds at the target location, then forms a line between fixation and the
target location, perhaps indicating a transformation into the trajectory of the memory-guided saccade.
C. BOLD activity in V1 during each time point during the delay period of B was visualized in a subspace
using principal components analysis (PCA; left). PCA is a technique that can reduce complex,
high-dimensional data (e.g., hundreds of voxels) into a small number of dimensions that best explain
the variability in the data. PC1 and PC2, the first two principal components (x-axis and y-axis) captured
horizontal and vertical visual space, respectively. The z-axis represents time from delay onset, and the
color wheel (right) indicates the location, in the visual field, represented by each of the eight colored
lines. Despite the dynamics visualized in B, this subspace was stable, as indicated by the relatively
constant position of each location over time. B and C adapted from (Li and Curtis, 2023)
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In visual working memory, decoders trained on activity patterns from perception of a stimulus

are often poor predictors of patterns during working memory, especially when compared with

training on working memory patterns themselves (Harrison and Tong, 2009; Serences et al.,

2009; Albers et al., 2013; Spaak et al., 2017; Rademaker et al., 2019; Hallenbeck et al., 2021a;

Iamshchinina et al., 2021). These results suggest that perceptual representations have been

reformatted during working memory but have the disadvantage of drawing conclusions based

on null results, which could arise for many reasons apart from reformatting. Recently developed

techniques allow projecting voxel activity from cortex into spatial visualizations in the same

screen coordinates as the presented stimuli (Kok and de Lange, 2014; Favila et al., 2022; Kwak

and Curtis, 2022; Yoo et al., 2022; Zhou et al., 2022; Li and Curtis, 2023; Woodry et al., 2024).

In one study using this technique (Kwak and Curtis, 2022), participants were required to make

orientation judgments for oriented grating stimuli and direction judgments for moving dots

stimuli. In both cases, reconstructions from neural activity in V1 and other areas demonstrated

that the task relevant features of the stimuli were extracted and re-coded into a shared

mnemonic format that took on the form of an abstract, line-like pattern aligned with the grating’s

orientation or the direction of dot motion. Importantly, this reformatting did not occur for

perception (Figure 5A). Other studies have now found similar results using slightly different

stimuli and techniques (Li and Curtis, 2023; Duan and Curtis, 2024) (Figure 5B). A related

behavioral and modeling study that carefully controlled for the sensory stimuli, actions, rules,

and predictability of the response needed during a working memory task found that recurrent

neural networks trained on the task did not merely store the sensory and/or motor action

required to complete the behavior (Ehrlich and Murray, 2022). Rather, they maintained a

“contingency representation,” providing a mapping from possible future task events to the

required actions, and patterns of response time from human subjects were consistent with the

use of contingency representations. Together, these studies provide strong evidence that
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working memory representations are efficient, compressed abstractions optimized to support

behavior, putting more of the “working” into working memory.

More generally, neural activity during working memory seems to be far more dynamic than

expected based on the canonical model of working memory. The neurons encoding the

memorandum and their population dynamics appear to change over the course of the working

memory delay, though the population appears to maintain a “stable subspace” allowing a

consistent readout of the memorandum (Murray et al., 2017; Spaak et al., 2017; Li and Curtis,

2023) (Figure 5C). Modeling suggests that such dynamics help to optimally store information in

working memory, where optimality is defined as maximizing the ability to decode the contents of

working memory at the end of the delay period (Stroud et al., 2023). Interestingly, in the model

such “optimal loading” further minimized the neural activity needed to maintain the

memorandum, and the activity subspace at perceptual input was orthogonal to that during the

late delay. Signatures of optimal loading were confirmed in data from macaque prefrontal cortex

(Stroud et al., 2023) and orthogonality between perceptual and working memory representations

has also been observed in mouse auditory cortex (Libby and Buschman, 2021). These results

indicate that even in the absence of reformatting into a more abstract representation, neural

dynamics may transform the working memory representation to protect it from perceptual

interference.

Integrative accounts of working memory storage

While we have focused on contrasting prefrontal cortex-focused with sensory-focused accounts

of working memory storage, there is a growing consensus that working memory is not a property

of any one brain region but rather is supported by interactions among multiple regions (Postle,

2006; D’Esposito, 2007; Fuster, 2015; Serences, 2016; Christophel et al., 2017; Iamshchinina et

al., 2021; Lorenc and Sreenivasan, 2021; Mejías and Wang, 2022; Comeaux et al., 2023).
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Distributed working memory may have multiple benefits over working memory localized to a

particular region. If the same or similar working memory contents are spread out over multiple

regions, it could afford greater robustness to noise and distraction (Hallenbeck et al., 2021a;

Iamshchinina et al., 2021), a proposal supported by computational modeling (Mejías and Wang,

2022). Indeed, disruptions to regions with persistent activity can bidirectionally affect the content

of other regions (e.g., (Fuster et al., 1985; Chafee and Goldman-Rakic, 2000), and there is

suggestive evidence that interactions between regions may be a stronger determinant of

working memory performance than activity within individual regions (Rezayat et al., 2022).

Besides redundancy, which implies that working memory representations in different regions are

merely copies, distributed working memory can take advantage of the different strengths

afforded by each region via its coding properties, depending on the demands of the task

(Serences, 2016; Christophel et al., 2017; Lorenc and Sreenivasan, 2021). Factors affecting the

loci of working memory storage might include distractor strength and relevance (Bettencourt and

Xu, 2016; Rademaker et al., 2019); whether the memorandum is abstract or more sensory in

nature, as well as its familiarity (Christophel et al., 2017; Rademaker et al., 2019); whether the

memory item is currently in the focus of attention or not (Christophel et al., 2018b), whether the

representation reflects the contents of working memory or its context (Teng and Postle, 2021,

2024), and whether the action to be taken at the end of the delay is known or not (Curtis et al.,

2004; Curtis and D’Esposito, 2006; Henderson et al., 2022). Supporting such flexibility, working

memory decoding from visual cortex is weaker when the correct motor response is known

(Henderson et al., 2022). Similarly, working memory is stronger in visual cortex when

fine-grained maintenance of the stimulus is required, but stronger in prefrontal cortex during

rule-based categorization of the stimulus (Shao et al., 2023). Furthermore, while most studies

find better distractor resistance in prefrontal cortex than other areas for spatial memoranda,

PPC may be more robust to distractors for numerical stimuli (Jacob and Nieder, 2014). In sum,
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the consensus emerging from these integrative perspectives shifts the emphasis of working

memory research from trying to identify the brain region(s) responsible for working memory

storage to asking how different regions and their interactions contribute to working memory, and

how those contributions may shift based on task context (Lorenc and Sreenivasan, 2021).

Working memory control processes

Up to this point, we have primarily focused on the storage, or memory, aspects of working

memory. But what about the “working” part, those processes that manipulate and update the

contents of working memory? While we know quite a bit about how working memory is stored in

the brain, understanding the control of working memory is far more challenging. Part of the

challenge stems from the fact that it can be very difficult to differentiate control processes from

storage on the basis of commonly used measures of persistent activity, as discussed above

(Curtis and D’Esposito, 2003). Moreover, multivariate encoding/decoding methods are best

suited to measure information about stimulus features (e.g., orientation, position, color, etc.)

stored in working memory. It remains challenging to decode aspects of control processes, as

researchers have less experimental control over their implementation. While there are many

control processes associated with working memory, here we focus on two of the more

well-studied classes of processes: those that control access to working memory, and those that

prioritize the contents of working memory.

Access to working memory

Access to working memory must be controlled if it is to function properly. A working memory

system that allows too many items to enter would be more susceptible to distraction and

interference, leading to poor performance. Conversely, a working memory system that does not

admit goal-relevant information when necessary would fail to form the necessary bridge

between previous perception and later action. Indeed, damage to prefrontal cortex can lead to
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distractibility, such that behavior that is more controlled by external stimuli, and perseveration,

indicating a failure to update behavior on the basis of new information (Goldman-Rakic, 2011),

both deficits suggesting the importance of prefrontal cortex for the control of working memory.

One mechanism for access to working memory appeals to the concept of a filter, a function

often attributed to the prefrontal cortex (Shimamura, 2000; Chrysikou et al., 2014). However,

there are debates about how this filtering operation might be implemented. Some accounts

suggest that filtering is an inhibitory function, suppressing irrelevant information from entering

working memory. For example, one proposal for why working memory declines with age is that

the aging brain has weaker inhibitory control, leading to a greater amount of information

entering working memory in older than in younger adults (Hasher and Zacks, 1988; Lustig et al.,

2007). An alternative view is that filtering is accomplished not by suppressing irrelevant

information or representations, but by top-down biasing signals from the prefrontal cortex that

enhance relevant representations, which could then suppress irrelevant representations via

competitive local inhibition (Munakata et al., 2011; Liesefeld et al., 2020).

Another mechanism for access to working memory appeals to the concept of a gate. When the

gate is open, working memory can be updated with new information; when it is closed, the

contents of working memory are protected from distraction. Both computational modeling and

neural evidence suggest that gating may be implemented by connectivity between prefrontal

cortex and the striatum, a subcortical region in the basal ganglia, where dopamine signals in the

striatum control or gate access to prefrontal working memory (O’Reilly and Frank, 2006; Badre

and Frank, 2012; D’Ardenne et al., 2012; Chatham et al., 2014; Furman et al., 2020).

Prioritization in working memory

The fact that working memory is capacity limited presents an optimization problem: if multiple

items need to be remembered, how should resources be allocated in order to maximize our
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memory? In particular, when some items are more important for recall than others, it would

make sense for our working memory system to have the capability to store more relevant items

with higher precision than less relevant items. This prioritization function thus provides more

subtle control over the current contents of working memory, complementing the access

functions described above.

Prioritization, as a control process, is amenable to study using the methods for understanding

storage described above and is an important example of how prefrontal cortex and visual cortex

interact in support of working memory. Prioritization has been tested using paradigms that cue

participants as to which of multiple items is most likely to be the target of recall. In these

conditions, people prioritize items in memory according to their behavioral relevance, resulting

in better memory for prioritized items but at a cost of worse memory for other items (Zhang and

Luck, 2008; Klyszejko et al., 2014; Emrich et al., 2017; Yoo et al., 2018). fMRI findings suggest

that the neural basis of prioritization in spatial working memory relies on interactions between

frontal and visual cortex. First, neural populations encoding high-priority items have higher

delay-period activity than those encoding low-priority items, suggesting that prioritization is

implemented at the neural level by changing the relative gain of populations responsible for

storing the memoranda (Yoo et al., 2022). Importantly, memorandum-specific gain changes

were not found in parietal or frontal cortex. Second, , trial-by-trial amplitudes of delay-period

activity in sPCS of the frontal cortex were found to predict prioritization in visual cortex (Li et al.,

2024) (Figure 6A–C). This relationship was unique to sPCS, suggesting that it controls

prioritization. Providing causal support for this hypothesis, disrupting activity in sPCS using TMS

disrupted the behavioral prioritization of working memory (Hallenbeck et al., 2024) (Figure

6D–F). Together, these results suggest a clear division of labor, in which prefrontal cortex is

involved in the control of working memory, while visual cortex plays a role in working memory

storage. This line of work serves as a critical example that understanding the control and
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storage subcomponents of working memory will require new analytic techniques that allow

researchers to measure trial-wise interactions between brain areas.

Figure 6. Prioritizing working memory resources. A. Both an fMRI and TMS study used a two-item
memory-guided saccade task. A pre-cue prior to the target stimuli indicated which of the two items was
more likely to be tested, where the high-priority target was tested twice as often (2:1 probe probability).
Behaviorally, high-priority items had smaller memory errors, indicating participants prioritized the items
in memory. Adapted from (Hallenbeck et al., 2024; Li et al., 2024). B. Decoded representations of high-
and low-priority items for an example participant in striate, extrastriate, parietal, and frontal visual field
maps. Note the better precision of the high-priority representations. C. Top: Cartoon model of
populations encoding a high- and low-priority item. The high-priority item has a higher gain (activity
level) than the low, leading to higher precision. Bottom: Differences in memory precision were
estimated from the neural data in B. Trial-by-trial differences in precision covaried with the amplitude of
persistent delay-period activity in bilateral sPCS (red maps). The sum of the precisions of both items,
perhaps related to the total amount of allocated resource, correlated with the delay-period amplitude of
a broader network in frontal and parietal cortex (yellow). D. Modeled electrical field evoked by TMS to
the sPCS (left). E. Hypothesized effects of TMS on low- and high-priority items in working memory.
Without TMS (top), the neural populations representing the high-priority item could have a higher gain
than those for the low-priority item, as in C. TMS could either corrupt the storage of the memoranda
(bottom left) or it could disrupt the prioritization, such that the items are maintained with closer to equal
gain (bottom right). F. Using a modified variable-precision model of working memory, the authors tested
which of the two hypothesized effects of TMS best accounted for memory errors. Left: Without TMS,
errors were smaller for high compared to low-priority items in the observed data. TMS reduced this
difference, mainly by reducing the errors for low-priority items. Middle: Modeled effects on memory
error if storage were corrupted by TMS. Right: Modeled effects on memory error if prioritization were
disrupted by TMS. Clearly, the observed data most resembled the modeled disruption of prioritization.
A,B, and C adapted from (Li et al., 2024) and D, E and F adapted from (Hallenbeck et al., 2024).
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Conclusion

In this review, we have outlined key behavioral signatures of working memory and what is

known about their neural substrates across three fundamental aspects: capacity, storage, and

control. As we have highlighted, rather than being subserved by any one brain area, working

memory is made possible by complex interactions across many parts of the brain, befitting its

crucial role in higher-order cognition. As is often the case, the development of our

understanding of working memory in cognitive neuroscience from more local to more distributed

perspectives has paralleled the development of neuroimaging techniques over the decades.

The first generation of PET and fMRI studies used gross amplitude measures to identify the

network of brain areas activated during working memory. The second generation of fMRI studies

used analyses of multivoxel patterns to decode and identify where working memory information

is stored in the brain. The third generation of fMRI studies, which has just begun, combines

decoding and amplitude measures and their interactions to test theories about how the control

processes of working memory are implemented in the brain.

Utilizing this new generation of techniques will facilitate solving important unanswered

challenges for understanding working memory:

1) We must better delineate the role of specific regions and their interactions in working

memory, which requires careful consideration of their potential contributions to both

storage and control.

2) With respect to storage, increasing our ability to reconstruct the contents of working

memory from neural data can further our understanding of why these contents are stored

where they are, how they guide behavior, and the transformations they undergo.



3) Control processes in working memory have been comparatively harder to study. Given

that operations on neural representations occur via interactions between brain areas

(Miller and Cohen, 2001; DiCarlo et al., 2012), an increasing focus on interactions within

and between regions could provide new avenues for identifying the neural substrates

and computations by which control processes maintain and manipulate the contents of

working memory.
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